Advertisement

Ligand Protected Gold Alloy Clusters as Superatoms

  • Michael Walter

Abstract

Density functional study of the experimentally observed ligand-protected gold alloy clusters reveal the same stabilization mechanism as in ligand protected pure AuN: the delocalized s-electron subsystem of a high symmetry metal core exhibits a shell closing. On the basis of this observation it is predicted that the substitution of a single Au atom in the well-known Au25(SR)18 compound with Pd, Ag, and Cd will produce stable clusters resulting in a method to tune redox properties in such a nanoscale building block. Similar shell closings are shown to stabilize the cores of experimentally known carbonyl protected nickel-gold and nickel-silver clusters. These species can be understood as structurally as well as electronically separated, weakly interacting gold/silver and nickel-carbonyl subsystems.

Keywords

High Occupied Molecular Orbital Fermi Energy Lower Unoccupied Molecular Orbital Gold Cluster Delocalized Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Akola, M. Walter, R. Whetten, H. Häkkinen, and H. Grönbeck. On the structure of thiolate-protected Au25. J. Am. Chem. Soc., 130(12):3756–3757, 2008. CrossRefGoogle Scholar
  2. 2.
    H.-A.L. Arratia-Perez R. Relativistic electronic structure of an icosahedral Au12Pd cluster. Chem. Phys. Lett., 303:641–648, 1999. CrossRefGoogle Scholar
  3. 3.
    E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch. Structural relaxation made simple. Phys. Rev. Lett., 97(17):170201, 2006. CrossRefGoogle Scholar
  4. 4.
    P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50(24):17953–17979, Dec 1994. CrossRefGoogle Scholar
  5. 5.
    G.C. Bond. The electronic structure of platinum-gold alloy particles. Platinum Metals Rev., 51(2):63–68, 2007. CrossRefGoogle Scholar
  6. 6.
    C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 105:1025–1102, 2005. CrossRefGoogle Scholar
  7. 7.
    M.-C. Daniel and D. Astruc. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104:293–346, 2004. CrossRefGoogle Scholar
  8. 8.
    W.A. de Heer. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys., 65:611–676, 1993. CrossRefGoogle Scholar
  9. 9.
    D. en Jiang and S. Dai. From superatomic Au25(SR)18- to superatomic M@Au24(SR)18q core-shell clusters. Inorg. Chem., 48:2720–2722, 2009. CrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Fields-Zinna, M. Crowe, A. Dass, and R.W. Murray. Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir, 25:7704–7710, 2009. CrossRefGoogle Scholar
  11. 11.
    M. Heaven, A. Dass, P. White, K. Holt, and R. Murray. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc., 130(12):3754–3755, 2008. CrossRefGoogle Scholar
  12. 12.
    S.A. Ivanov, M.A. Kozee, W.A. Merrill, S. Agarwal, and L.F. Dahl. Cyclo-[Ni(μ2-SPh)2]9 and cyclo-[Ni(μ2-SPh)2]11: new oligomeric types of toroidal nickel(ii) thiolates containing geometrically unprecedented 9- and 11-membered ring systems. J. Chem. Soc., Dalton Trans., pages 4105–4115, 2002. Google Scholar
  13. 13.
    P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, and R.D. Kornberg. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science, 318:430–433, 2007. CrossRefGoogle Scholar
  14. 14.
    A.J.W. Johnson, B. Spencerb, and L.F. Dahl. Synthesis and experimental/theoretical investigation of the high-nuclearity cubic td [au6ni12(co)24]2- cluster, an initial example of a discrete gold-nickel bimetallic-bonded species: comparative analysis of the results of electron-counting methods and the fenske-hall mo model in rationalizing the bonding interactions of its au6ni12 core consisting of five face-fused metal octahedra. Inorg. Chim. Ac., 227:269–283, 1994. CrossRefGoogle Scholar
  15. 15.
    M.A. Kozee, J.M. Zhang, and L.F. Dahl. Isostructural T-D [Au16Ni24(CO)(40)](4-) and [Ag16Ni24(CO)(40)](4-) clusters: Stabilization of a microscopic ccp chunk of gold or silver metal. Abstracts of Papers of Am. Chem. Soc., 219:U832–U832, 2000. Google Scholar
  16. 16.
    M. Laupp and J. Strähle. [(ph3pau)6(dppeau2)(aucl)4pd], an icosahedral au12 cluster with a central pd atom. Ang. Chem. Int. Ed., 33:207–209, 1994. CrossRefGoogle Scholar
  17. 17.
    J.J. Mortensen, L.B. Hansen, and K.W. Jacobsen. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 71:035109, 2005. CrossRefGoogle Scholar
  18. 18.
    G. Pacchioni, L. Ackermann, and N. Rösch. Chemical bonding in low-, medium- and high-nuclearity nickel carbonyl clusters. Gazz. Chim. Ital., 122:205–214, 1992. Google Scholar
  19. 19.
    G. Pacchioni and N. Rösch. Carbonylated nickle clusters: From molecules to metals. Acc. Chem. Res., 28:390–397, 1995. CrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865–3868, 1996. CrossRefGoogle Scholar
  21. 21.
    P. Pyykkö. Theoretical chemistry of gold. Ang. Chem. Int. Ed., 43:4412–4456, 2004. CrossRefGoogle Scholar
  22. 22.
    M. Ricco, T. Shiroka, S. Carretta, F. Bolzoni, C. Femoni, M.C. Iapalucci, and G. Longoni. The magnetic behaviour of [NnBu4]4[Ni16Pd16(CO)40]: An even-electron homoleptic carbonyl–metal cluster anion displaying a J=2 ground state. Chem. Eur. J., 11:2856–2861, 2005. CrossRefGoogle Scholar
  23. 23.
    N. Rösch, L. Ackermann, and G. Pacchioni. Developing magnetic and metallic behavior in high-nuclearity nickel cluster carbonyls. J. Am. Chem. Soc., 114:3549–3555, 1992. CrossRefGoogle Scholar
  24. 24.
    Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi, and T. Tsukuda. Extremely high stability of glutathionate-protected au25 clusters against core etching. Small, 3:835–839, 2007. CrossRefGoogle Scholar
  25. 25.
    B.K. Teo and H. Zhang. Molecular and crystal structure of an iodo-gold-silver-platinum cluster, [(ph3p)6au6ag6pt(agi3)2](thf)2, with a trimetallic icosahedral core capped with two planar [agi3] units. J. Organomet. Chem., 614-615:66–69, 2000. CrossRefGoogle Scholar
  26. 26.
    N.T. Tran, M. Kawano, D.R. Powell, R.K. Hayashi, C.F. Campana, and L.F. Dahl. Isostructural [Au6Pd6(Pd6-xNix)Ni20(CO)44]6- and [Au6Ni32(CO)44]6- Clusters Containing Corresponding Nonstoichiometric Au6Pd6(Pd6-xNix)Ni20 and Stoichiometric Au6Ni32 Nanosized Cores: Substitutional Pd/Ni Crystal Disorder (Coloring Problem) at Only Six Specific Nonadjacent Pseudoequivalent Metal Sites in the 38-Atom Trimetallic Close-Packed Framework. J. Am. Chem. Soc., 121:5945–5952, 1999. CrossRefGoogle Scholar
  27. 27.
    D.A. van Leeuwen, J.M. van Ruitenbeek, L.J. de Jongh, A. Ceriotti, G. Pacchioni, O.D. Häberlen, and N. Rösch. Quenching of magnetic moments by ligand-metal interactions in nanosized magnetic metal clusters. Phys. Rev. Lett., 73(10):1432–1435, Sep 1994. CrossRefGoogle Scholar
  28. 28.
    M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, and H. Häkkinen. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Nat. Acad. Sc., 105(27):9157–9162, 2008. CrossRefGoogle Scholar
  29. 29.
    M. Walter and M. Moseler. How to observe the oxidation of magnesia supported Pd clusters by scanning tunnelling microscopy. Accepted by Phys. Stat. Solidi, 2009. Google Scholar
  30. 30.
    M. Walter and M. Moseler. Ligand protected gold alloy clusters: doping the superatom. J. Chem. Phys. C, 113:15834, 2009. CrossRefGoogle Scholar
  31. 31.
    A.J. Whoolery and L.F. Dahl. Synthesis and structural-bonding analysis of the [Au6Ni12(CO)24]2- dianion containing an unprecedented 18-vertex cubic td metal core composed of five face-fused octahedra: the first example of a discrete gold/nickel bimetallic-bonded species. J. Am. Chem. Soc., 113:6683–6685, 1991. CrossRefGoogle Scholar
  32. 32.
    J. Zhang and L.F. Dahl. First-known high-nuclearity silver–nickel carbonyl cluster: nanosized [Ag16Ni24(CO)40]4- possessing a new 40-atom cubic Td closed-packed metal-core geometry. J. Chem. Soc., Dalton Trans., page 1269–1274, 2002. Google Scholar
  33. 33.
    M. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, and R. Jin. Correlating the crystal structure of a thiol-protected au25 cluster and optical properties. J. Am. Chem. Soc., 130(18):5883–5885, 2008. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Freiburger MaterialforschungszentrumAlbert-Ludwigs-Universität FreiburgFreiburg i.Br.Germany

Personalised recommendations