A Numerical Study of Turbulent Stably-Stratified Plane Couette Flow

  • Manuel García-Villalba
  • Elena Azagra
  • Markus Uhlmann
Conference paper

Abstract

Direct numerical simulations (DNS) of stably-stratified, turbulent plane Couette flow are currently being performed on the XC-4000. The friction Reynolds number is kept approximately constant, Re τ ≃540 and the Richardson number Ri w varies between 0 and 0.1. The flow is divided into two regions: the region close to the wall and the core region. The region close to the wall presents strong velocity and density gradients and its structure is similar to unstratified wall-turbulence. In the core region, the gradients of mean velocity and density are approximately constant, and the structure of the flow is similar to homogeneous stratified turbulence with shear. With increasing stratification the formation of layers is clearly observed. The layers are inclined with respect to the wall plane and their thickness decreases with increasing stratification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Turner. Buoyancy effects in fluids. Cambridge Univ. Press, 1973. Google Scholar
  2. 2.
    F.T.M. Nieuwstadt. The turbulent structure of the stable, nocturnal boundary layer. Journal of the Atmospheric Sciences, 41(14):2202–2216, 1984. CrossRefGoogle Scholar
  3. 3.
    R.B. Stull. An introduction to boundary layer meteorology. Kluwer Academic, 1999. Google Scholar
  4. 4.
    S.A. Thorpe. The turbulent ocean. Cambridge Univ. Press, Cambridge 2005. Google Scholar
  5. 5.
    C. Wunsch and R. Ferrari. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36:281–314, 2004. CrossRefMathSciNetGoogle Scholar
  6. 6.
    G.N. Ivey, K.B. Winters, and J.R. Koseff. Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech., 40:169–184, 2008. CrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Brethouwer, P. Billant, and E. Lindborg. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech., 585:343–368, 2007. MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J.J. Riley and E. Lindborg. Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65:2416–2424, 2008. CrossRefGoogle Scholar
  9. 9.
    M. García-Villalba and J.C. del Álamo. Turbulence and internal waves in a stably-stratified channel flow. In W.E. Nagel et al., editor, High Performance Computing in Science and Engineering ’08, pages 217–227. Springer, 2008. Google Scholar
  10. 10.
    M. García-Villalba and J.C. del Álamo. Turbulence modification by stable stratification in channel flow. In preparation, 2010. Google Scholar
  11. 11.
    S. Komori, H. Ueda, F. Ogino, and T. Mizushina. Turbulent structure in stably stratified open-channel flow. J. Fluid Mech., 130:13–26, 1983. CrossRefGoogle Scholar
  12. 12.
    V. Armenio and S. Sarkar. An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459:1–42, 2002. MATHCrossRefGoogle Scholar
  13. 13.
    A. Lundbladh and A.V. Johansson. Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech., 229:499–516, 1991. MATHCrossRefGoogle Scholar
  14. 14.
    K.H. Bech, N. Tillmark, P.H. Alfredsson, and H.I. Andersson. An investigation of turbulent plane Couette flow at low Reynolds numbers. J. Fluid Mech., 286:291–325, 1995. CrossRefGoogle Scholar
  15. 15.
    J. Komminaho, A. Lundbladh, and A.V. Johansson. Very large structures in plane turbulent Couette flow. J. Fluid Mech., 320:259–285, 1996. MATHCrossRefGoogle Scholar
  16. 16.
    C.H. Liu. Turbulent plane Couette flow and scalar transport at low Reynolds numbers. J. Fluid Mech., 286:291–325, 1995. CrossRefGoogle Scholar
  17. 17.
    T. Tsukahara, H. Kawamura, and K. Shingai. DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. J. Turbulence, 7(19), 2006. Google Scholar
  18. 18.
    C.P. Caulfield and R.R. Kerswell. Maximal mixing rate in turbulent stably stratified Couette flow. Phys. Fluids, 13(4):894–900, 2001. CrossRefMathSciNetGoogle Scholar
  19. 19.
    C.P. Caulfield, W. Tang, and S.C. Plasting. Reynolds number dependence of an upper bound for the long-time-averaged buoyancy flux in plane stratified Couette flow. J. Fluid Mech., 498:315–332, 2004. MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    W. Tang, C.P. Caulfield, and R.R. Kerswell. A prediction for the optimal stratification for turbulent mixing. J. Fluid Mech., 634:487–497, 2009. MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177:133–166, 1987. MATHCrossRefGoogle Scholar
  22. 22.
    P.R. Spalart, R.D. Moser, and M.M. Rogers. Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comp. Phys., 96:297–324, 1991. MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    J.C. del Álamo and J. Jiménez. Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids, 15:L41–L44, 2003. CrossRefGoogle Scholar
  24. 24.
    J.C. del Álamo, J. Jiménez, P. Zandonade, and R.D. Moser. Scaling of the energy spectra in turbulent channels. J. Fluid Mech., 500:135–144, 2004. MATHCrossRefGoogle Scholar
  25. 25.
    E. Azagra. Mixing efficiency in stably-stratified turbulent Couette flow. Master thesis, Karlsruhe Institute of Technology, 2009. Google Scholar
  26. 26.
    J. Miles. On the stability of heterogeneous shear flows. J. Fluid Mech., 10:496–508, 1961. MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    P.F. Linden. Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn., 13:3–23, 1979. CrossRefGoogle Scholar
  28. 28.
    W.D. Smyth and J.N. Moum. Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12(6):1327–1342, 2000. MATHCrossRefGoogle Scholar
  29. 29.
    E. Lindborg. The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550:207–242, 2006. MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuel García-Villalba
    • 1
  • Elena Azagra
    • 1
  • Markus Uhlmann
    • 1
  1. 1.Institut für HydromechanikKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations