Model-Based Multi-view Fusion of Cinematic Flow and Optical Imaging

  • Mickael Savinaud
  • Martin de La Gorce
  • Serge Maitrejean
  • Nikos Paragios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6362)


Bioluminescence imaging (BLI) offers the possibility to study and image biology at molecular scale in small animals with applications in oncology or gene expression studies. Here we present a novel model-based approach to 3D animal tracking from monocular video which allows the quantification of bioluminescence signal on freely moving animals. The 3D animal pose and the illumination are dynamically estimated through minimization of an objective function with constraints on the bioluminescence signal position. Derived from an inverse problem formulation, the objective function enables explicit use of temporal continuity and shading information, while handling important self-occlusions and time-varying illumination. In this model-based framework, we include a constraint on the 3D position of bioluminescence signal to enforce tracking of the biologically produced signal. The minimization is done efficiently using a quasi-Newton method, with a rigorous derivation of the objective function gradient. Promising experimental results demonstrate the potentials of our approach for 3D accurate measurement with freely moving animal.


Bioluminescence Imaging Bioluminescence Signal Monocular Video Promising Experimental Result IEEE CVPR 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weissleder, R.: Scaling down imaging: molecular mapping of cancer in mice. Nature Reviews Cancer 2, 11–18 (2002)CrossRefGoogle Scholar
  2. 2.
    Gibson, A.P., Hebden, J.C., Arridge, S.R.: Recent advances in diffuse optical imaging. Physics in Medicine and Biology 50(4), R1–R43 (2005)CrossRefGoogle Scholar
  3. 3.
    Hildebrandt, I.J., Su, H., Weber, W.A.: Anesthesia and other considerations for in vivo imaging of small animals. ILAR Journal 49(1), 17–26 (2008)Google Scholar
  4. 4.
    Roncali, E., Savinaud, M., Levrey, O., Rogers, K.L., Maitrejean, S., Tavitian, B.: A new device for real time bioluminescence imaging in moving rodents. Journal of Biomedical Imaging 13(5), 054035 (2008)Google Scholar
  5. 5.
    Rogers, K.L., Picaud, S., Roncali, E., Boisgard, R., Colasante, C., Stinnakre, J., Tavitian, B., Brulet, P.: Non-invasive in vivo imaging of calcium signaling in mice. In: PLoS ONE (October 2007)Google Scholar
  6. 6.
    Kuo, C., Coquoz, O., Troy, T.L., Xu, H., Rice, B.W.: Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. Journal of Biomedical Optics 12(2), 024007 (2007)CrossRefGoogle Scholar
  7. 7.
    Papademetris, X., Dione, D.P., Dobrucki, L.W., Staib, L.H., Sinusas, A.J.: Articulated rigid registration for serial lower-limb mouse imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 919–926. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Baiker, M., Milles, J., Vossepoel, A., Que, I., Kaijzel, E., Lowik, C., Reiber, J., Dijkstra, J., Lelieveldt, B.: Fully automated whole-body registration in mice using articulated skeleton atlas. In: IEEE ISBI 2007, pp. 728–731 (April 2007)Google Scholar
  9. 9.
    Favreau, L., Reveret, L., Depraz, C., Cani, M.P.: Animal gaits from video. In: ACM SIGGRAPH Symposium on Computer Animation (2004)Google Scholar
  10. 10.
    Gall, J., Stoll, C., de Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.P.: Motion capture using joint skeleton tracking and surface estimation. In: IEEE CVPR 2009, pp. 1746–1753 (June 2009)Google Scholar
  11. 11.
    de LaGorce, M., Paragios, N., Fleet, D.: Model-based hand tracking with texture, shading and self-occlusions. In: IEEE CVPR 2008, pp. 1–8 (June 2008)Google Scholar
  12. 12.
    Magnenat-Thalmann, N., Laperrière, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping, pp. 26–33 (1988)Google Scholar
  13. 13.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: ACM SIGGRAPH, pp. 165–172 (2000)Google Scholar
  14. 14.
    Cook, M.J.: The Anatomy of the Laboratory Mouse. Elsevier, Amsterdam (1965)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mickael Savinaud
    • 1
    • 2
    • 3
  • Martin de La Gorce
    • 1
  • Serge Maitrejean
    • 3
  • Nikos Paragios
    • 1
    • 2
  1. 1.Laboratoire MAS, École Centrale ParisFrance
  2. 2.Equipe GALEN, INRIA Saclay - Île de FranceOrsayFrance
  3. 3.Biospace LabParisFrance

Personalised recommendations