Simultaneous Fine and Coarse Diffeomorphic Registration: Application to Atrophy Measurement in Alzheimer’s Disease

  • Laurent Risser
  • François-Xavier Vialard
  • Robin Wolz
  • Darryl D. Holm
  • Daniel Rueckert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6362)

Abstract

In this paper, we present a fine and coarse approach for the multiscale registration of 3D medical images using Large Deformation Diffeomorphic Metric Mapping (LDDMM). This approach has particularly interesting properties since it estimates large, smooth and invertible optimal deformations having a rich descriptive power for the quantification of temporal changes in the images. First, we show the importance of the smoothing kernel and its influence on the final solution. We then propose a new strategy for the spatial regularization of the deformations, which uses simultaneously fine and coarse smoothing kernels. We have evaluated the approach on both 2D synthetic images as well as on 3D MR longitudinal images out of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Results highlight the regularizing properties of our approach for the registration of complex shapes. More importantly, the results also demonstrate its ability to measure shape variations at several scales simultaneously while keeping the desirable properties of LDDMM. This opens new perspectives for clinical applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007)CrossRefGoogle Scholar
  3. 3.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12, 26–41 (2008)CrossRefGoogle Scholar
  4. 4.
    Beg, F.M., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)CrossRefGoogle Scholar
  5. 5.
    Crum, W., Tanner, C., Hawkes, D.: Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging. Physics in Medicine and Biology 50(21), 5153–5174 (2005)CrossRefGoogle Scholar
  6. 6.
    Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. LVI(3), 587–600 (1998)MathSciNetGoogle Scholar
  7. 7.
    Haber, E., Modersitzki, J.: Cofir: coarse and fine image registration. In: SIAM Real-Time PDE-Constrained Optimization, pp. 37–49 (2007)Google Scholar
  8. 8.
    Hernandez, M., Bossa, M.N.,Olmos, S.: Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int. J. Comput. Vision  85(3), 291–306 (2009)Google Scholar
  9. 9.
    Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., Joshi, S.: Multi-modal image set registration and atlas formation. Med. Image Anal. 10(3), 440–451 (2006)CrossRefGoogle Scholar
  10. 10.
    Miller, M., Younes, L.: Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision 41(1-2), 61–84 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Risser, L., Vialard, F., Murgasova, M., Holm, D., Rueckert, D.: Large diffeomorphic registration using fine and coarse strategies. application to the brain growth characterization. In: International Workshop on Biomedical Image Registration -WBIR, pp. 186–197 (2010)Google Scholar
  12. 12.
    Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L.M., Trojanowski, J.Q., Thompson, P.M., Jack, J.C.R., Weiner, M.W.: Disease Neuroimaging Initiative: MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132(4), 1067–1077 (2009)CrossRefGoogle Scholar
  13. 13.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Laurent Risser
    • 1
    • 2
  • François-Xavier Vialard
    • 1
  • Robin Wolz
    • 2
  • Darryl D. Holm
    • 1
  • Daniel Rueckert
    • 2
  1. 1.Institute for Mathematical ScienceImperial College LondonLondonUK
  2. 2.Department of ComputingVisual Information Processing, Imperial College London, Huxley BuildingLondonUK

Personalised recommendations