Automated Training Data Generation for Microscopy Focus Classification

  • Dashan Gao
  • Dirk Padfield
  • Jens Rittscher
  • Richard McKay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6362)


Image focus quality is of utmost importance in digital microscopes because the pathologist cannot accurately characterize the tissue state without focused images. We propose to train a classifier to measure the focus quality of microscopy scans based on an extensive set of image features. However, classifiers rely heavily on the quality and quantity of the training data, and collecting annotated data is tedious and expensive. We therefore propose a new method to automatically generate large amounts of training data using image stacks. Our experiments demonstrate that a classifier trained with the image stacks performs comparably with one trained with manually annotated data. The classifier is able to accurately detect out-of-focus regions, provide focus quality feedback to the user, and identify potential problems of the microscopy design.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liron, Y., Paran, Y., Zatorsky, N.G., Geiger, B., Kam, Z.: Laser autofocusing system for high-resolution cell biological imaging. J. Microsc. 221, 145–151 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Santos, A., Ortiz de Solorzano, C., Vaquero, J.J., Pena, J.M., Malpica, N., del Pozo, F.: Evaluation of autofocus functions in molecular cytogenetic analysis. J. Microsc. 188, 264–272 (1997)CrossRefGoogle Scholar
  3. 3.
    Firestone, L., Cook, K., Culp, K., Talsania, N., Preston, K.: Comparison of autofocus methods for automated microscopy. Cytometry 12, 195–206 (1991)CrossRefGoogle Scholar
  4. 4.
    Liu, X.Y., Wang, W.H., Sun, Y.: Dynamic evaluation of autofocusing for automated microscopic analysis of blood smear and pap smear. J. Microsc 227, 15–23 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Yeo, T., Jayasooriah, S.H.O., Sinniah, R.: Autofocusing for tissue microscopy. Img. and Vis. Comp. 11, 629–639 (1993)CrossRefGoogle Scholar
  6. 6.
    Nayar, S., Nakagawa, Y.: Shape from focus. IEEE PAMI 16(8), 824–831 (1994)Google Scholar
  7. 7.
    Dubois, F., Schockaert, C., Callens, N., Yourassowsky, C.: Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14(13), 5895–5908 (2006)CrossRefGoogle Scholar
  8. 8.
    Della Mea, V., Viel, F., Beltrami, C.A.: A pixel-based autofocusing technique for digital histologic and cytologic slides. Comput. Med. Imaging Graph 29, 333–341 (2005)CrossRefGoogle Scholar
  9. 9.
    Yazdanfar, S., Kenny, K., Tasimi, K., Corwin, A., Dixon, E., Filkins, R.: Simple and robust image-based autofocusing for digital microscopy. Opt. Express 16, 8670–8677 (2008)CrossRefGoogle Scholar
  10. 10.
    Sun, Y., Duthaler, S., Nelson, B.J.: Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc. Res. Tech. 65, 139–149 (2004)CrossRefGoogle Scholar
  11. 11.
    Padfield, D., Rittscher, J., Roysam, B.: Defocus and low CNR detection for cell tracking applications. In: MIAAB Workshop (2008)Google Scholar
  12. 12.
    Viola, P., Jones, M.: Robust real-time object detection. In: 2nd Int. Workshop on Statistical and Computational Theories of Vision Modeling, Learning, Computing and Sampling (July 2001)Google Scholar
  13. 13.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  15. 15.
    Krotkov, E.: Focusing. IJCV 1(3), 223–237 (1988)CrossRefGoogle Scholar
  16. 16.
    Subbarao, M., Choi, T., Nikzad, A.: Focus techniques. J. Opt. Eng. 32, 2824–2836 (1993)CrossRefGoogle Scholar
  17. 17.
    Vollath, D.: Automatic focusing by correlative methods. J. Microsc 147, 279–288 (1987)Google Scholar
  18. 18.
    Huang, J., Mumford, D.: Statistics of Natural Images and Models. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 541–547. IEEE Computer Society, Los Alamitos (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dashan Gao
    • 1
  • Dirk Padfield
    • 1
  • Jens Rittscher
    • 1
  • Richard McKay
    • 2
  1. 1.GE Global ResearchOne Research CircleNiskayuna
  2. 2.Omnyx, 800 Centennial Avenue, Building 4, 2nd FloorPiscataway

Personalised recommendations