Advertisement

Simulation of Nodules and Diffuse Infiltrates in Chest Radiographs Using CT Templates

  • G. J. S. Litjens
  • L. Hogeweg
  • A. M. R. Schilham
  • P. A. de Jong
  • M. A. Viergever
  • B. van Ginneken
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6362)

Abstract

A method is proposed to simulate nodules and diffuse infiltrates in chest radiographs. This allows creation of large annotated databases for training of both radiologists and computer aided diagnosis systems. Realistic nodules and diffuse infiltrates were generated from three-dimensional templates segmented from CT data. These templates are rescaled, rotated, projected and superimposed on a radiograph. This method was compared, in an observer study, to a previously published method that simulates pulmonary nodules as perfectly spherical objects. Results show that it is hard for human observers to distinguish real and simulated nodules when using templates (AUC-values do not significantly differ from .5, p > .05 for all observers). The method that produced spherical nodules performed slightly worse (AUC of one observer differs significantly from .5, p = .011). Simulation of diffuse infiltrates is challenging but also feasible (AUC=0.67 for one observer).

Keywords

CT radiograph simulation nodules diffuse infiltrates 

References

  1. 1.
    Bhargavan, M.: Trends in the utilization of medical procedures that use ionizing radiation. Medical Physics 134, 612–627 (2008)Google Scholar
  2. 2.
    Forrest, J.V., Friedman, P.J.: Radiologic errors in patients with lung cancer. Western Journal of Medicine 134, 485–490 (1981)Google Scholar
  3. 3.
    Muhm, J.R., Miller, W.E., Fontana, R.S., Sanderson, D.R., Uhlenhopp, M.A.: Lung cancer detected during a screening program using four-month chest radiographs. Radiology 148, 609–615 (1983)Google Scholar
  4. 4.
    Abe, H., Macmahon, H., Engelmann, R., et al.: Computer-aided Diagnosis in Chest Radiography: Results of Large-Scale Observer Tests at the 1996–2001 RSNA Scientific Assemblies. Radiographics 23, 255–265 (2003)CrossRefGoogle Scholar
  5. 5.
    Xu, D.M., Gietema, H., de Koning, H., Vernhout, R., Nackaerts, K., Prokop, M., Weenink, C., Lammers, J., Groen, H., Oudkerk, M., van Klaveren, R.: Nodule management protocol of the NELSON randomised lung cancer screening trial. Lung Cancer 54(2), 177–184 (2006)CrossRefGoogle Scholar
  6. 6.
    Arzhaeva, Y., Prokop, M., Tax, D.M.J., de Jong, P.A., Schaefer-Prokop, C.M., van Ginneken, B.: Computer-aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography. Medical Physics 34(12), 4798–4809 (2007)CrossRefGoogle Scholar
  7. 7.
    Schilham, A.M.R., van Ginneken, B.: Simulating nodules in chest radiographs with real nodules from multi-slice CT images. In: Medical Imaging (2006)Google Scholar
  8. 8.
    Kostis, W., Reeves, A., Yankelevitz, D., Henschke, C.: Three-dimensional segmentation and growth rate estimation of small pulmonary nodules in helical CT images. Trans. Med. Imag. 22(10), 1259–1274 (2003)CrossRefGoogle Scholar
  9. 9.
    van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Medical Image Analysis 10(1), 19–40 (2006)CrossRefGoogle Scholar
  10. 10.
    Samei, E., Flynn, M.J., Eyler, W.R.: Detection of Subtle Lung Nodules: Relative Influence of Quantum and Anatomic Noise on Chest Radiographs. Radiology 213(3), 727–734 (1999)Google Scholar
  11. 11.
    DeLong, E., DeLong, D., Clarke-Pearson, D.: Comparison of the area under two or more correlated receiver operating characteristic curves. Biometrics 44, 837–845 (1988)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • G. J. S. Litjens
    • 1
    • 2
  • L. Hogeweg
    • 2
  • A. M. R. Schilham
    • 2
  • P. A. de Jong
    • 2
  • M. A. Viergever
    • 2
  • B. van Ginneken
    • 2
    • 1
  1. 1.Diagnostic Image Analysis GroupRadboud University Nijmegen Medical CentreThe Netherlands
  2. 2.Image Sciences InstituteUtrecht University Medical CenterThe Netherlands

Personalised recommendations