Advertisement

An Anthropomorphic Polyvinyl Alcohol Triple-Modality Brain Phantom Based on Colin27

  • Sean Jy-Shyang Chen
  • Pierre Hellier
  • Jean-Yves Gauvrit
  • Maud Marchal
  • Xavier Morandi
  • D. Louis Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6362)

Abstract

We propose a method for the creation of an anatomically and mechanically realistic brain phantom from polyvinyl alcohol cryogel (PVA-C) for validation of image processing methods for segmentation, reconstruction, registration, and denoising. PVA-C is material widely used in medical imaging phantoms for its mechanical similarities to soft tissues. The phantom was cast in a mold designed using the left hemiphere of the Colin27 brain dataset [1] and contains deep sulci, a complete insular region, and an anatomically accurate left ventricle. Marker spheres and inflatable catheters were also implanted to enable good registration and simulate tissue deformation, respectively. The phantom was designed for triple modality imaging, giving good contrast images in computed tomography, ultrasound, and magnetic resonance imaging. Multimodal data acquired from this phantom are made freely available to the image processing community (http://pvabrain.inria.fr) and will aid in the validation and further development of medical image processing techniques.

Keywords

Vinyl Alcohol Insular Region Freeze Thaw Cycle Live Brain Deep Sulcus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Holmes, C., Hoge, R., Collins, L., Woods, R., Toga, A., Evans, A.: Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography 22(2), 324 (1998)CrossRefGoogle Scholar
  2. 2.
    Surry, K.J.M., Austin, H.J.B., Fenster, A., Peters, T.M.: Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and mr imaging. Physics in Medicine and Biology 49(24), 5529–5546 (2004)CrossRefGoogle Scholar
  3. 3.
    Reinertsen, I., Descoteaux, M., Drouin, S., Siddiqi, K., Collins, D.L.: Vessel driven correction of brain shift. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 208–216. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Reinertsen, I., Collins, D.L.: A realistic phantom for brain-shift simulations. Medical Physics 33(9), 3234–3240 (2006)CrossRefGoogle Scholar
  5. 5.
    Peppas, N.A.: Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Die Makromolekulare Chemie 176(11), 3433–3440 (1975)CrossRefGoogle Scholar
  6. 6.
    Stauffer, S.R., Peppas, N.A.: Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33(18), 3932–3936 (1992)CrossRefGoogle Scholar
  7. 7.
    Peppas, N.A., Stauffer, S.R.: Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. Journal of Controlled Release 16(3), 305–310 (1991)CrossRefGoogle Scholar
  8. 8.
    Chu, K.C., Rutt, B.K.: Polyvinyl alcohol cryogel: An ideal phantom material for MR studies of arterial flow and elasticity. Magnetic Resonance in Medicine 37(2), 314–319 (1997)CrossRefGoogle Scholar
  9. 9.
    Duboeuf, F., Bbasarab, A., Liebgott, H., Brusseau, E., Delechartre, P., Vray, D.: Investigation of pva cryogel young’s modulus stability with time, controlled by a simple reliable technique. Medical Physics 36(2), 656–661 (2009)CrossRefGoogle Scholar
  10. 10.
    Mehrabian, H., Samani, A.: Constrained hyperelastic parameters reconstruction of pva (polyvinyl alcohol) phantom undergoing large deformation. In: Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling, vol. 7261 (March 2009)Google Scholar
  11. 11.
    Manohar, S., Kharine, A., van Hespen, J.C.G., Steenbergen, W., van Leeuwen, T.G.: Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms. Journal of Biomedical Optics 9(6), 1172–1181 (2004)CrossRefGoogle Scholar
  12. 12.
    Fromageau, J., Gennisson, J.L., Schmitt, C., Maurice, R., Mongrain, R., Cloutier, G.: Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 54(3), 498–509 (2007)CrossRefGoogle Scholar
  13. 13.
    Khaled, W., Neumann, T., Ermert, H., Reichling, S., Arnold, A., Bruhns, O.: Evaluation of material parameters of pva phantoms for reconstructive ultrasound elastography. In: IEEE Ultrasonics Symposium, pp. 1329–1332 (2007)Google Scholar
  14. 14.
    Jia, C., Kim, K., Kolias, T., Weitzel, W., Rubin, J., O’Donnell, M.: Left ventricular phantom with pulsatile circulation for ultrasound strain rate imaging. In: IEEE Ultrasonics Symposium, pp. 1317–1320 (2006)Google Scholar
  15. 15.
    Fallenstein, G., Hulce, V., Melvin, J.: Dynamic mechanical properties of human brain tissue. Journal of Biomechanics 2(3), 217–226 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sean Jy-Shyang Chen
    • 1
  • Pierre Hellier
    • 2
  • Jean-Yves Gauvrit
    • 2
    • 3
    • 4
  • Maud Marchal
    • 2
  • Xavier Morandi
    • 2
    • 3
    • 4
  • D. Louis Collins
    • 1
  1. 1.McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  2. 2.INRIA, Centre de Recherche, Rennes, Bretagne AtlantiqueFrance
  3. 3.INSERM U746, IRISARennesFrance
  4. 4.Université de Rennes 1RennesFrance

Personalised recommendations