Advertisement

Morphology-Guided Graph Search for Untangling Objects: C. elegans Analysis

  • T. Riklin Raviv
  • V. Ljosa
  • A. L. Conery
  • F. M. Ausubel
  • A. E. Carpenter
  • P. Golland
  • C. Wählby
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)

Abstract

We present a novel approach for extracting cluttered objects based on their morphological properties. Specifically, we address the problem of untangling Caenorhabditis elegans clusters in high-throughput screening experiments. We represent the skeleton of each worm cluster by a sparse directed graph whose vertices and edges correspond to worm segments and their adjacencies, respectively. We then search for paths in the graph that are most likely to represent worms while minimizing overlap. The worm likelihood measure is defined on a low-dimensional feature space that captures different worm poses, obtained from a training set of isolated worms. We test the algorithm on 236 microscopy images, each containing 15 C. elegans worms, and demonstrate successful cluster untangling and high worm detection accuracy.

Keywords

Medial Axis Graph Vertex Graph Search Path Candidate Worm Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artal-Sanz, M., de Jong, L., Tavernarakis, N.: Caenorhabditis elegans: A versatile platform for drug discovery. Biotechnol. J. 1, 1405–1418 (2006)CrossRefGoogle Scholar
  2. 2.
    Kamath, R.S., Ahringer, J.: Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30(4), 313–321 (2003)CrossRefGoogle Scholar
  3. 3.
    Sifri, C.D., Begun, J., Ausubel, F.M.: The worm has turned – microbial virulence modeled in Caenorhabditis elegans. Trends Microbiology 13, 119–127 (2005)CrossRefGoogle Scholar
  4. 4.
    Moy, T.I., Conery, A.L., Larkins-Ford, J., Wu, G., Mazitschek, R., Casadei, G., Lewis, K., Carpenter, A.E., Ausubel, F.M.: High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chemical Biology 4(7), 527–533 (2009)CrossRefGoogle Scholar
  5. 5.
    Ramot, D., Johnson, B., Berry, T., Carnell, L., Goodman, M.: The parallel worm tracker: A platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One 3(5) (2008)Google Scholar
  6. 6.
    Geng, W., Cosman, P., Berry, C.C., Feng, Z., Schafer, W.R.: Automatic tracking, feature extraction and classification of C. elegans phenotypes. IEEE Transactions on Biomedical Engineering 51(10), 1811–1820 (2004)CrossRefGoogle Scholar
  7. 7.
    Restif, C., Metaxas, D.: Tracking the swimming motions of C. elegans worms with applications in aging studies. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 35–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E.: A 3D digital atlas of C. elegans and its application to single-cell analyses. Nature Methods 6(9), 667–672 (2009)CrossRefGoogle Scholar
  9. 9.
    Murray, J.I., Bao, Z., Boyle, T.J., Boeck, M.E., Mericle, B.L., Nicholas, T.J., Zhao, Z., Sandel, M.J., Waterston, R.H.: Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nature Methods (2008)Google Scholar
  10. 10.
    Rizvandi, N.B., Pizurica, A., Philips, W.: Machine vision detection of isolated and overlapped nematode worms using skeleton analysis. In: Proc. of ICIP, pp. 2972–2975 (2008)Google Scholar
  11. 11.
    Cremers, D., Sochen, N., Schnörr, C.: A multiphase dynamic labeling model for variational recognition-driven image segmentation. IJCV 66(1), 67–81 (2006)CrossRefGoogle Scholar
  12. 12.
    Blum, H.: A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form, 362–380 (1967)Google Scholar
  13. 13.
    Goutsias, J., Shonfeld, D.: Morphological representation of discrete and binary images. IEEE Transactions on Signal Processing 39(6), 1369–1379 (1991)CrossRefGoogle Scholar
  14. 14.
    Stephens, G.J., Kerner, J.B., Bialek, W., Ryu, W.S.: Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput. Biol. 4(4) (2008)Google Scholar
  15. 15.
    Wählby, C., Riklin-Raviv, T., Ljosa, V., Conery, A.L., Golland, P., Ausubel, F.M., Carpenter, A.E.: Resolving clustered worms via probabilistic shape models. In: Proc. of ISBI (2010)Google Scholar
  16. 16.
    Pohl, K., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R.W., Kikinis, R., Grimson, W.E.L., Shenton, M.E., Wells, W.M.: A hierarchical algorithm for MR brain image parcellation. IEEE TMI 26(9), 1201–1212 (2007)Google Scholar
  17. 17.
    Tu, Z., Narr, K., Dollár, P., Dinov, I., Thompson, P., Toga, A.: Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE TMI 27(4), 495–508 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • T. Riklin Raviv
    • 1
  • V. Ljosa
    • 2
  • A. L. Conery
    • 3
  • F. M. Ausubel
    • 3
  • A. E. Carpenter
    • 2
  • P. Golland
    • 1
  • C. Wählby
    • 2
  1. 1.Computer Science and Artificial Intelligence LaboratoryMITCambridge
  2. 2.Imaging PlatformBroad Institute of MIT and HarvardCambridge
  3. 3.Dept. of Molecular Biology and Center for Computational and Integrative BiologyMass. General HospitalBoston

Personalised recommendations