Probabilistic Multi-Shape Representation Using an Isometric Log-Ratio Mapping

  • Neda Changizi
  • Ghassan Hamarneh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)


Several sources of uncertainties in shape boundaries in medical images have motivated the use of probabilistic labeling approaches. Although it is well-known that the sample space for the probabilistic representation of a pixel is the unit simplex, standard techniques of statistical shape analysis (e.g. principal component analysis) have been applied to probabilistic data as if they lie in the unconstrained real Euclidean space. Since these techniques are not constrained to the geometry of the simplex, the statistically feasible data produced end up representing invalid (out of the simplex) shapes. By making use of methods for dealing with what is known as compositional or closed data, we propose a new framework intrinsic to the unit simplex for statistical analysis of probabilistic multi-shape anatomy. In this framework, the isometric log-ratio (ILR) transformation is used to isometrically and bijectively map the simplex to the Euclidean real space, where data are analyzed in the same way as unconstrained data and then back-transformed to the simplex. We demonstrate favorable properties of ILR over existing mappings (e.g. LogOdds). Our results on synthetic and brain data exhibit a more accurate statistical analysis of probabilistic shapes.


Compositional Data Compositional Line Closed Data Unit Simplex Label Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Udupa, J.K., Grevera, G.J.: Go digital, go fuzzy. Pattern Recognit. Lett. 23(6), 743–754 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  3. 3.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  4. 4.
    Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)CrossRefGoogle Scholar
  5. 5.
    Tsai, A., Wells, W., Tempany, C., Grimson, E., Willsky, A.: Mutual information in coupled multi-shape model for medical image segmentation. Med. Image Anal. 8(4), 429–445 (2004)CrossRefGoogle Scholar
  6. 6.
    Babalola, K., Cootes, T.: Registering richly labelled 3D images. In: IEEE ISBI, pp. 868–871 (2006)Google Scholar
  7. 7.
    Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE CVPR, pp. 316–323 (2000)Google Scholar
  8. 8.
    Golland, P., Grimson, W., Shenton, M., Kikinis, R.: Detection and analysis of statistical differences in anatomical shape. Med. Image Anal., 69–86 (2005)Google Scholar
  9. 9.
    Pohl, K.M., Fisher, J., Bouix, S., Shenton, M., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Using the logarithm of odds to define a vector space on probabilistic atlases. Med. Image Anal. 11(5), 465–477 (2007)CrossRefGoogle Scholar
  10. 10.
    Malcolm, J., Rathi, Y., Shenton, M., Tannenbaum, A.: Label space: A coupled multi-shape representation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 416–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Hamarneh, G., Changizi, N.: Barycentric label space. In: MICCAI Workshop on Probabilistic Models for Medical Image Analysis, pp. 162–173 (2009)Google Scholar
  12. 12.
    Cremers, D., Schmidt, F.R., Barthel, F.: Shape priors in variational image segmentation: Convexity, Lipschitz continuity and globally optimal solutions. In: IEEE CVPR, pp. 1–6 (2008)Google Scholar
  13. 13.
    Aitchison, J.: The statistical analysis of compositional data. Chapman & Hall Ltd., Boca Raton (1986)zbMATHGoogle Scholar
  14. 14.
    Pawlowsky-Glahn, V., Egozcue, J.J., Tolosana-Delgado, R.: Lecture notes on compositional data analysis (2007),
  15. 15.
    Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barcel-Vidal, C.: Isometric logratio transformations for compositional data analysis. Math. Geol. 35(3), 279–300 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Pawlowsky-Glahn, V., Egozcue, J.J.: Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research and Risk Assessment 15(5), 384–398 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Pawlowsky-Glahn, V., Egozcue, J.J.: BLU estimators and compositional data. Math. Geol. 34(3), 259–274 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Billheimer, D., Guttorp, P., Fagan, W.F.: Statistical analysis and interpretation of discrete compositional data. Technical Report 11, University of Washington, Seattle, Washington (1997)Google Scholar
  19. 19.
    Billheimer, D., Guttorp, P., Fagan, W.F.: Statistical interpretation of species composition. J. of the American Statistical Association 96(456), 1205–1214 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Connor, R.J., Mosimann, J.E.: Concepts of independence for proportions with a generalization of the dirichlet distribution. J. of the American Statistical Association 64(325), 194–206 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Pike, G.B., Evans, A.C.: BrainWeb: Online interface to a 3D MRI simulated brain database. NeuroImage 5, 425 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Neda Changizi
    • 1
  • Ghassan Hamarneh
    • 1
  1. 1.Medical Image Analysis LabSimon Fraser UniversityCanada

Personalised recommendations