Automated Sulci Identification via Intrinsic Modeling of Cortical Anatomy

  • Yonggang Shi
  • Bo Sun
  • Rongjie Lai
  • Ivo Dinov
  • Arthur W. Toga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)


In this paper we propose a novel and robust system for the automated identification of major sulci on cortical surfaces. Using multiscale representation and intrinsic surface mapping, our system encodes anatomical priors in manually traced sulcal lines with an intrinsic atlas of major sulci. This allows the computation of both individual and joint likelihood of sulcal lines for their automatic identification on cortical surfaces. By modeling sulcal anatomy with intrinsic geometry, our system is invariant to pose differences and robust across populations and surface extraction methods. In our experiments, we present quantitative validations on twelve major sulci to show the excellent agreement of our results with manually traced curves. We also demonstrate the robustness of our system by successfully applying an atlas of Chinese population to identify sulci on Caucasian brains of different age groups, and surfaces extracted by three popular software tools.


Cortical Surface Joint Likelihood Intrinsic Geometry Quantitative Validation Multiscale Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Thompson, P.M., et al.: Mapping cortical change in alzheimers disease, brain development, and schizophrenia. NeuroImage 23, S2–S18 (2004)CrossRefGoogle Scholar
  2. 2.
    Qiu, A., Bitouk, D., Miller, M.I.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans. Med. Imag. 25(10), 1296–1306 (2006)CrossRefGoogle Scholar
  3. 3.
    Reuter, M., Wolter, F., Peinecke, N.: Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. Computer-Aided Design 38, 342–366 (2006)CrossRefGoogle Scholar
  4. 4.
    Shi, Y., et al.: Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons. In: Proc. MMBIA, pp. 1–7 (2008)Google Scholar
  5. 5.
    Shi, Y., et al.: Inverse-consistent surface mapping with Laplace-Beltrami eigen-features. In: Proc. IPMI, pp. 467–478 (2009)Google Scholar
  6. 6.
    Lohmann, G., Cramon, D.: Automatic labelling of the human cortical surface using sulcal basins. Med. Image. Anal. 4, 179–188 (2000)CrossRefGoogle Scholar
  7. 7.
    Tao, X., Prince, J., Davatzikos, C.: Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain. IEEE Trans. Med. Imag. 21(5), 513–524 (2002)CrossRefGoogle Scholar
  8. 8.
    Rivière, D., et al.: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med. Image. Anal. 6, 77–92 (2002)CrossRefGoogle Scholar
  9. 9.
    Tu, Z., et al.: Automated extraction of the cortical sulci based on a supervised learning approach. IEEE Trans. Med. Imag. 26, 541–552 (2007)CrossRefGoogle Scholar
  10. 10.
    Shi, Y., et al.: Joint sulcal detection on cortical surfaces with graphical models and boosted priors. IEEE Trans. Med. Imag. 28(3), 361–373 (2009)CrossRefGoogle Scholar
  11. 11.
    Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum. 27(2), 251–260 (2008)CrossRefGoogle Scholar
  12. 12.
    Mémoli, F., Sapiro, G., Osher, S.: Solving variational problems and partial differential equations mapping into general target manifolds. Journal of Computational Physics 195(1), 263–292 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shi, Y., et al.: Hamilton-Jacobi skeleton on cortical surfaces. IEEE Trans. Med. Imag. 27(5), 664–673 (2008)CrossRefGoogle Scholar
  14. 14.
    Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis i: segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999)CrossRefGoogle Scholar
  15. 15.
    Shattuck, D., Leahy, R.: BrainSuite: An automated cortical surface identification tool. Med. Image. Anal. 8(2), 129–142 (2002)CrossRefGoogle Scholar
  16. 16.
    Mangin, J.F., et al.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5(4), 297–318 (1995)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yonggang Shi
    • 1
  • Bo Sun
    • 2
  • Rongjie Lai
    • 3
  • Ivo Dinov
    • 1
  • Arthur W. Toga
    • 1
  1. 1.Lab of Neuro ImagingUCLA School of MedicineLos AngelesUSA
  2. 2.Shandong University School of MedicineJinan, ShandongChina
  3. 3.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations