Advertisement

MRI-Guided Robotic Prostate Biopsy: A Clinical Accuracy Validation

  • Helen Xu
  • Andras Lasso
  • Siddharth Vikal
  • Peter Guion
  • Axel Krieger
  • Aradhana Kaushal
  • Louis L. Whitcomb
  • Gabor Fichtinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)

Abstract

Prostate cancer is a major health threat for men. For over five years, the U.S. National Cancer Institute has performed prostate biopsies with a magnetic resonance imaging (MRI)-guided robotic system. Purpose: A retrospective evaluation methodology and analysis of the clinical accuracy of this system is reported. Methods: Using the pre and post-needle insertion image volumes, a registration algorithm that contains a two-step rigid registration followed by a deformable refinement was developed to capture prostate dislocation during the procedure. The method was validated by using three-dimensional contour overlays of the segmented prostates and the registrations were accurate up to 2 mm. Results: It was found that tissue deformation was less of a factor than organ displacement. Out of the 82 biopsies from 21 patients, the mean target displacement, needle placement error, and clinical biopsy error was 5.9 mm, 2.3 mm, and 4 mm, respectively. Conclusion: The results suggest that motion compensation for organ displacement should be used to improve targeting accuracy.

Keywords

Prostate Biopsy Needle Insertion Needle Placement Pubic Bone Target Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.: Cancer statistics, 2009. CA Cancer J. Clin. 59(4), 225–249 (2009)CrossRefGoogle Scholar
  2. 2.
    Presti Jr., J.: Prostate cancer: Assessment of risk using digital rectal examination, tumor grade, prostate-specific antigen, and systematic biopsy. Radiol. Clin. North Amer. 38(1), 49–58 (2000)CrossRefGoogle Scholar
  3. 3.
    Terris, M., Wallen, E., Stamey, T.: Comparison of mid-lobe versus lateral systematic sextant biopsies in detection of prostate cancer. Urol. Int. 59, 239–242 (1997)CrossRefGoogle Scholar
  4. 4.
    Wefer, A., Hricak, H., Vigneron, D., Coakley, F., Lu, Y., Wefer, J., Mueller-Lisse, U., Carroll, P., Kurhanewicz, J.: Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J. Urol. 163(2), 400–404 (2000)Google Scholar
  5. 5.
    Susil, R., Ménard, C., Krieger, A., Coleman, J., Camphausen, K., Choyke, P., Fichtinger, G., Whitcomb, L., Coleman, C., Atalar, E.: Transrectal prostate biopsy and fiducial marker placement in a standard 1.5T magnetic resonance imaging scanner. J. Urol. 175(1), 113–120 (2006)CrossRefGoogle Scholar
  6. 6.
    Adusumilli, S., Pretourius, E.: Magnetic resonance imaging of prostate cancer. Semin. Urol. Oncol. 20, 192–210 (2002)CrossRefGoogle Scholar
  7. 7.
    Krieger, A., Susil, R., Menard, C., Coleman, J., Fichtinger, G., Atalar, E., Whitcomb, L.: Design of novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans. Biomed. Eng. 52(2), 295–304 (2008)Google Scholar
  8. 8.
    Xu, H., Lasso, A., Vikal, S., Guion, P., Krieger, A., Kaushal, A., Whitcomb, L., Fichtinger, G.: Accuracy validation for MRI-guided robotic prostate biopsy. In: SPIE Medical Imaging: Visualization, Image-Guided Procedure, and Modeling, vol. 7625, pp. 762517–762517–8 (2010)Google Scholar
  9. 9.
    Karnik, V., Fenster, A., Bax, J., Cool, D., Gardi, L., Gyacskov, I., Romagnoli, C., Ward, A.: Assessment of registration accuracy in three-dimensional transrectal ultrasound images of prostates. In: SPIE Medical Imaging: Visualization, Image-guided Procedures and Modeling, vol. 7625, pp. 762516–762516–8 (2010)Google Scholar
  10. 10.
    Misra, S., Macura, K., Ramesh, K., Okamura, A.: The importance of organ geometry and boundary constraints for planning of medical interventions. Medical Engineering and Physics 31(2), 195–206 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Helen Xu
    • 1
  • Andras Lasso
    • 1
  • Siddharth Vikal
    • 1
  • Peter Guion
    • 2
  • Axel Krieger
    • 3
  • Aradhana Kaushal
    • 2
  • Louis L. Whitcomb
    • 4
  • Gabor Fichtinger
    • 1
    • 4
  1. 1.Queen’s UniversityKingstonCanada
  2. 2.National Institutes of HealthBethesdaUSA
  3. 3.Sentinelle Medical Inc.TorontoCanada
  4. 4.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations