Tracking of Irregular Graphical Structures for Tissue Deformation Recovery in Minimally Invasive Surgery

  • Marco Visentini-Scarzanella
  • Robert Merrifield
  • Danail Stoyanov
  • Guang-Zhong Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)


Tissue deformation tracking is an important topic of minimally invasive surgery with applications ranging from intra-operative guidance to augmented reality visualisation. In this paper, we present a technique for visual tracking of irregular structures with an arbitrary degree of connectivity in space. The variational formulation of the proposed method ensures that correlation is maximised between tracked points and their computed new positions while the overall structure shape variation is minimised, thus maintaining spatial coherence of the tracked structure. The proposed method is applied to surgical annotation and tracking in 3D for telementoring and path-planning. The results are validated both on a CT-scanned phantom model and in vivo, showing an average alignment error of 1.79 mm (± 0.72 mm).


Left Anterior Descend Optical Flow Closed Contour Stereo Match Tissue Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stoyanov, D., Mylonas, G., Yang, G.-Z.: Gaze-Contingent 3D Control for Focused Energy Ablation in Robotic Assisted Surgery. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 347–355. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Mylonas, G., Kwok, K.W., Darzi, A., Yang, G.-Z.: Gaze-Contingent Motor Channelling and Haptic Constraints for Minimally Invasive Robotic Surgery. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 676–683. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Mountney, P., Stoyanov, D., Yang, G.Z.: Soft Tissue Tracking for Minimally Invasive Surgery: Learning Local Deformation Online. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 364–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 18 (1981)CrossRefGoogle Scholar
  5. 5.
    Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Steinbruecker, F., Pock, T., Cremers, D.: Advanced Data Terms for Variational Optic Flow Estimation. In: Vision, Modeling, and Visualization Workshop, Braunscweig, Germany (2009)Google Scholar
  7. 7.
    Giannarou, S., Visentini-Scarzanella, M., Guang-Zhong, Y.: Affine-invariant anisotropic detector for soft tissue tracking in minimally invasive surgery. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 1059–1062 (2009)Google Scholar
  8. 8.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)MathSciNetGoogle Scholar
  9. 9.
    Steinbruecker, F., Pock, T., Cremers, D.: Large Displacement Optical Flow Computation Without Warping. In: IEEE International Conference on Computer Vision, Kyoto, Japan (2009)Google Scholar
  10. 10.
    Rav-Acha, A., Kohli, P., Rother, C., Fitzgibbon, A.: Unwrap Mosaics: A new representation for video editing. In: ACM Transactions on Graphics (SIGGRAPH 2008) (2008)Google Scholar
  11. 11.
    Ali, M.R., et al.: 3-D telestration: a teaching tool for robotic surgery. J. Laparoendosc. Adv. Surg. Tech. 18(1), 107–112 (2008)CrossRefGoogle Scholar
  12. 12.
    Stoyanov, D., Darzi, A., Yang, G.Z.: Dense 3D Depth Recovery for Soft Tissue Deformation During Robotically Assisted Laparoscopic Surgery. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 41–48. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marco Visentini-Scarzanella
    • 1
  • Robert Merrifield
    • 2
  • Danail Stoyanov
    • 2
  • Guang-Zhong Yang
    • 1
    • 2
  1. 1.Royal Society/Wolfson Foundation MIC Laboratory 
  2. 2.Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom

Personalised recommendations