Extraction of the Plane of Minimal Cross-Sectional Area of the Corpus Callosum Using Template-Driven Segmentation

  • Neda Changizi
  • Ghassan Hamarneh
  • Omer Ishaq
  • Aaron Ward
  • Roger Tam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)


Changes in corpus callosum (CC) size are typically quantified in clinical studies by measuring the CC cross-sectional area on a midsagittal plane. We propose an alternative measurement plane based on the role of the CC as a bottleneck structure in determining the rate of interhemispheric neural transmission. We designate this plane as the Minimum Corpus Callosum Area Plane (MCCAP), which captures the cross section of the CC that best represents an upper bound on interhemispheric transmission. Our MCCAP extraction method uses a nested optimization framework, segmenting the CC as it appears on each candidate plane, using registration-based segmentation. We demonstrate the robust convergence and high accuracy of our method for magnetic resonance images and present preliminary clinical results showing higher sensitivity to disease-induced atrophy.


Brute Force Midsagittal Plane Deformable Registration Magnetic Resonance Imaging Volume Brute Force Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aboitiz, F., Scheibel, A.B., Fisher, R.S., Zaidel, E.: Fiber composition of the human corpus callosum. Brain Res. 598(1-2), 143–153 (1992)CrossRefGoogle Scholar
  2. 2.
    Simon, J.H., et al.: A longitudinal study of brain atrophy in relapsing multiple sclerosis. Neurology 53(1), 139–148 (1999)Google Scholar
  3. 3.
    Woodruff, P.W., McManus, I.C., David, A.S.: Meta-analysis of corpus callosum size in schizophrenia. J. Neurol. Neurosurg. Psychiatry 58(4), 457–461 (1995)CrossRefGoogle Scholar
  4. 4.
    Hardan, A.Y., Minshew, N.J., Keshavan, M.S.: Corpus callosum size in autism. Neurology 55(9), 1033–1036 (2000)Google Scholar
  5. 5.
    Smith, S., Jenkinson, M.: Accurate robust symmetry estimation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 308–317. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Ardekani, B.A., Kershaw, J., Braun, M., Kanuo, I.: Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE TMI 16(6), 947–952 (1997)Google Scholar
  7. 7.
    Liu, Y., Collins, R., Rothfus, W.: Robust midsagittal plane extraction from normal and pathological 3D neuroradiology images. IEEE TMI 20(3), 175–192 (2001)Google Scholar
  8. 8.
    Brummer, M.E.: Hough transform detection of the longitudinal fissure in tomographic head images. IEEE TMI 10(1), 74–81 (1991)Google Scholar
  9. 9.
    Marais, P., Guillemaud, R., Sakuma, M., Zisserman, A., Brady, M.: Visualising cerebral asymmetry. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 411–416. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Anbazhagan, P., Carass, A., Bazin, P.L., Prince, J.L.: Automatic estimation of midsagittal plane and AC-PC alignment on nonrigid registration. In: IEEE ISBI, pp. 828–831 (2006)Google Scholar
  11. 11.
    Ishaq, O., Hamarneh, G., Tam, R., Traboulsee, A.: Effects of Mid Sagittal Plane Perturbation and Image Interpolation on Corpus Callosum Area Calculation. In: IEEE ISSPIT, pp. 197–202 (2006)Google Scholar
  12. 12.
    Skoglund, K.V., Stegmann, M.B., Ryberg, C., Ólafsdóttir, H., Rostrup, E.: Estimation and Perturbation of the Mid-Sagittal Plane and its Effects on Corpus Callosum Morphometry. In: International Society of Magnetic Resonanc in Medicine (2005)Google Scholar
  13. 13.
    Barkhof, F.J., Elton, M., Lindeboom, J., Tas, M.W., Schmidt, W.F., Hommes, O.R., Polman, C.H., Kok, A., Valk, J.: Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study. J. Neurol. 245(3), 153–158 (1998)Google Scholar
  14. 14.
    Bonzano, L., Tacchino, A., Roccatagliata, L., Abbruzzese, G., Luigi Mancardi, G., Bove, M.: Callosal contributions to simultaneous bimanual finger movements. J. Neurosci. 28(12), 3227–3233 (2008)CrossRefGoogle Scholar
  15. 15.
    Pozzilli, C., Bastianello, S., Padovani, A., Passafiume, D., Millefiorini, E., Bozzao, L., Fieschi, C.: Anterior corpus callosum atrophy and verbal fluency in multiple sclerosis. Cortex 27(3), 441–445 (1991)Google Scholar
  16. 16.
    Pelletier, J., Suchet, L., Witjas, T., Habib, M., Guttmann, C.R., Salamon, G., Lyon-Caen, O., Chérif, A.A.: A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch. Neurol. 58(1), 105–111 (2001)CrossRefGoogle Scholar
  17. 17.
    Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A.C.: Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping 3(3), 190–208 (1995)CrossRefGoogle Scholar
  18. 18.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense Image Registration through MRFs and Efficient Linear Programming. Med. Image Anal. 12(6), 731–741 (2008)CrossRefGoogle Scholar
  19. 19.
    Komodakis, N., Tziritas, G., Paragios, N.: Fast, Approximately Optimal Solutions for Single and Dynamic MRFs. In: IEEE CVPR, pp. 1–8 (2007)Google Scholar
  20. 20.
    Fletcher, R., Powell, M.J.D.: A Rapidly Convergent Descent Method for Minimization. Computer Journal 6, 163–168 (1963)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Goldfarb, D.: A Family of Variable Metric Updates Derived by Variational Means. Mathematics of Computing 24, 23–26 (1970)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. Thieme, New York (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Neda Changizi
    • 1
  • Ghassan Hamarneh
    • 1
  • Omer Ishaq
    • 1
    • 2
  • Aaron Ward
    • 1
    • 3
  • Roger Tam
    • 4
  1. 1.Medical Image Analysis LabSimon Fraser UniversityCanada
  2. 2.Department of Computer SciencesAir UniversityPakistan
  3. 3.Robarts Research InstituteThe University of Western OntarioCanada
  4. 4.MS/MRI Research GroupUniversity of British ColumbiaCanada

Personalised recommendations