Optimized Anisotropic Rotational Invariant Diffusion Scheme on Cone-Beam CT

  • Dirk-Jan Kroon
  • Cornelis H. Slump
  • Thomas J. J. Maal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)


Cone-beam computed tomography (CBCT) is an important image modality for dental surgery planning, with high resolution images at a relative low radiation dose. In these scans the mandibular canal is hardly visible, this is a problem for implant surgery planning. We use anisotropic diffusion filtering to remove noise and enhance the mandibular canal in CBCT scans. For the diffusion tensor we use hybrid diffusion with a continuous switch (HDCS), suitable for filtering both tubular as planar image structures. We focus in this paper on the diffusion discretization schemes. The standard scheme shows good isotropic filtering behavior but is not rotational invariant, the diffusion scheme of Weickert is rotational invariant but suffers from checkerboard artifacts. We introduce a new scheme, in which we numerically optimize the image derivatives. This scheme is rotational invariant and shows good isotropic filtering properties on both synthetic as real CBCT data.


Standard Scheme Mandibular Canal Noise Structure Uniform Region Edge Preservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Roberts, J., Drage, N., Davies, J., Thomas, D.: Effective dose from Cone-beam CT examinations in dentistry. Br. J. Radiol. 82, 35–40 (2009)CrossRefGoogle Scholar
  2. 2.
    Sunnegardh, J.: Iterative Filtered Backprojection Methods for Helical Cone-Beam CT. PhD thesis, Computer Vision, The Institute of Technology (2009)Google Scholar
  3. 3.
    Awate, S., Whitaker, R.: Unsupervised, Information-Theoretic, Adaptive Image Filtering for Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 28, 364–376 (2006)CrossRefGoogle Scholar
  4. 4.
    Perona, P., Malik, J.: Scale-space and Edge Detection using Anisotropic Diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  5. 5.
    Weickert, J.: Anisotropic Diffusion in Image Processing. PhD thesis, University of Copenhagen, Department of Computer Science (1998)Google Scholar
  6. 6.
    Mendrik, A., Vonken, E., Rutten, A., Viergever, M., van Ginneken, B.: Noise Reduction in Computed Tomography Scans using 3D Anisotropic Hybrid Diffusion with Continuous Switch. IEEE Trans. Med. Imaging 28(10), 1585–1594 (2009)CrossRefGoogle Scholar
  7. 7.
    Weickert, J., Scharr, H.: A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance. J. Vis. Commun. Image Represent. 13(1), 103–118 (2002)CrossRefGoogle Scholar
  8. 8.
    Frangakis, A., Hegerl, R.: Noise Reduction in Electron Tomographic Reconstructions using Nonlinear Anisotropic Diffusion. J. Struct. Biol. (135), 239–250 (2001)Google Scholar
  9. 9.
    Felsberg, M.: On the Relation between Anisotropic Diffusion and Iterated Adaptive Filtering. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 436–445. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Opt. 9(1), 112–147 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Shanno, D.: Conditioning of Quasi-Newton Methods for Function Minimization. Math. Comput. 24(111), 647–656 (1970)MathSciNetGoogle Scholar
  12. 12.
    Ahmed, M., Yamany, S., Farag, A., Moriarty, T.: Bias Field Estimation and Adaptive Segmentation of MRI Data Using a Modified Fuzzy C-Means Algorithm. In: Proc. IEEE Int. Conf. Comput. Vis. and Pattern Recognit., pp. 250–255 (1999)Google Scholar
  13. 13.
    Buades, A., Coll, B., Morel, J.: A Non-Local Algorithm for Image Denoising. In: Proc. of IEEE CVPR 2005, Washington, DC, USA, vol. 2, pp. 60–65. IEEE Computer Society, Los Alamitos (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dirk-Jan Kroon
    • 1
  • Cornelis H. Slump
    • 1
  • Thomas J. J. Maal
    • 2
  1. 1.Signals and SystemUniversity of TwenteThe Netherlands
  2. 2.Radboud University Nijmegen Medical CenterThe Netherlands

Personalised recommendations