3D Knowledge-Based Segmentation Using Pose-Invariant Higher-Order Graphs

  • Chaohui Wang
  • Olivier Teboul
  • Fabrice Michel
  • Salma Essafi
  • Nikos Paragios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)


Segmentation is a fundamental problem in medical image analysis. The use of prior knowledge is often considered to address the ill-posedness of the process. Such a process consists in bringing all training examples in the same reference pose, and then building statistics. During inference, pose parameters are usually estimated first, and then one seeks a compromise between data-attraction and model-fitness with the prior model. In this paper, we propose a novel higher-order Markov Random Field (MRF) model to encode pose-invariant priors and perform 3D segmentation of challenging data. The approach encodes data support in the singleton terms that are obtained using machine learning, and prior constraints in the higher-order terms. A dual-decomposition-based inference method is used to recover the optimal solution. Promising results on challenging data involving segmentation of tissue classes of the human skeletal muscle demonstrate the potentials of the method.


Markov Random Field Factor Graph Active Shape Model Point Distribution Model Clique Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995), doi:10.1006/cviu.1995.1004CrossRefGoogle Scholar
  2. 2.
    Mazziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J.: A probabilistic atlas of the human brain: Theory and rationale for its development: The international consortium for brain mapping (icbm). NeuroImage 2(2, Part 1), 89–101 (1995)CrossRefGoogle Scholar
  3. 3.
    Staib, L.H., Duncan, J.S.: Boundary finding with parametrically deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1061–1075 (1992)CrossRefGoogle Scholar
  4. 4.
    Leventon, M.E., Grimson, W.E.L., Faugeras, O.D.: Statistical shape influence in geodesic active contours. In: CVPR (2000)Google Scholar
  5. 5.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Frey, B.J.: Graphical Models for Machine Learning and Digital Communication. MIT Press, Cambridge (1998)Google Scholar
  7. 7.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (August 2006)zbMATHGoogle Scholar
  8. 8.
    Besbes, A., Komodakis, N., Langs, G., Paragios, N.: Shape priors and discrete mrfs for knowledge-based segmentation. In: CVPR (2009)Google Scholar
  9. 9.
    Seghers, D., Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Minimal shape and intensity cost path segmentation. IEEE TMI 26(8), 1115–1129 (2007)Google Scholar
  10. 10.
    Donner, R., Langs, G., Bischof, H.: Sparse mrf appearance models for fast anatomical structure localisation. In: British Machine Vision Conference (2007)Google Scholar
  11. 11.
    Luo, B., Hancock, E.R.: Iterative procrustes alignment with the em algorithm. Image Vision Comput. 20(5-6), 377–396 (2002)CrossRefGoogle Scholar
  12. 12.
    Lekadir, K., Merrifield, R., Yang, G.: Outlier detection and handling for robust 3-d active shape models search. IEEE TMI 26, 212–222 (2007)Google Scholar
  13. 13.
    Bernardino, A., Santos-Victor, J.: Fast iir isotropic 2-d complex gabor filters with boundary initialization.  15, 3338–3348 (2006)Google Scholar
  14. 14.
    Kokkinos, I., Yuille, A.: Scale invariance without scale selection. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2008)Google Scholar
  15. 15.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)zbMATHGoogle Scholar
  16. 16.
    Komodakis, N., Paragios, N.: Beyond pairwise energies: Efficient optimization for higher-order mrfs. In: CVPR (2009)Google Scholar
  17. 17.
    Essafi, S., Langs, G., Deux, J.F., Rahmouni, A., Bassez, G., Paragios, N.: Wavelet-driven knowledge-based mri calf muscle segmentation. In: Proceedings of the Sixth IEEE international conference on Symposium on Biomedical Imaging (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chaohui Wang
    • 1
    • 2
  • Olivier Teboul
    • 1
    • 3
  • Fabrice Michel
    • 1
    • 2
  • Salma Essafi
    • 1
    • 2
  • Nikos Paragios
    • 1
    • 2
  1. 1.Laboratoire MASEcole Centrale de ParisFrance
  2. 2.Equipe GALENINRIA Saclay - Île de FranceOrsayFrance
  3. 3.MicrosoftFrance

Personalised recommendations