Cellular Automata Segmentation of Brain Tumors on Post Contrast MR Images

  • Andac Hamamci
  • Gozde Unal
  • Nadir Kucuk
  • Kayihan Engin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6363)

Abstract

In this paper, we re-examine the cellular automata(CA) algorithm to show that the result of its state evolution converges to that of the shortest path algorithm. We proposed a complete tumor segmentation method on post contrast T1 MR images, which standardizes the VOI and seed selection, uses CA transition rules adapted to the problem and evolves a level set surface on CA states to impose spatial smoothness. Validation studies on 13 clinical and 5 synthetic brain tumors demonstrated the proposed algorithm outperforms graph cut and grow cut algorithms in all cases with a lower sensitivity to initialization and tumor type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M.C., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., Kikinis, R.: Statistical validation of image segmentation quality based on a spatial overlap index. Academic Radiology 11(2), 178–189 (2004)CrossRefGoogle Scholar
  2. 2.
    Chan, T.F., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: Automatic 3-d segmentation of brain tumors. In: ICPR, vol. 1, p. 10532 (2002)Google Scholar
  4. 4.
    Liu, J., Udupa, J.K., Odhner, D., Hackney, D., Moonis, G.: A system for brain tumor volume estimation via mr imaging and fuzzy connectedness. Computerized Medical Imaging and Graphics 29, 21–34 (2005)CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: ICCV, pp. 105–112 (2001)Google Scholar
  6. 6.
    Grady, L.: Random walks for image segmentation. PAMI 28(11), 1768–1783 (2006)Google Scholar
  7. 7.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: ICCV (2009)Google Scholar
  8. 8.
    Sinop, A., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: ICCV (2007)Google Scholar
  9. 9.
    Szeliski, R., et al.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. PAMI 30(6) (2008)Google Scholar
  10. 10.
    Vezhnevets, V., Konouchine, V.: Growcut - interactive multi-label n-d image segmentation by cellular automata. In: Graphicon, Novosibirsk Akademgorodok, Russia (2005)Google Scholar
  11. 11.
    Therasse, P.: Evaluation of response: new and standard criteria. Annals of Oncology 13, 127–129 (2002)Google Scholar
  12. 12.
    Prastawa, M., Bullitt, E., Gerig, G.: Synthetic ground truth for validation of brain tumor mri segmentation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 26–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andac Hamamci
    • 1
  • Gozde Unal
    • 1
  • Nadir Kucuk
    • 2
  • Kayihan Engin
    • 2
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.Department of Radiation OncologyAnadolu Medical CenterKocaeliTurkey

Personalised recommendations