Advertisement

Knowledge-Based Situation Interpretation for Context-Aware Augmented Reality in Dental Implant Surgery

  • D. Katić
  • G. Sudra
  • S. Speidel
  • G. Castrillon-Oberndorfer
  • G. Eggers
  • R. Dillmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6326)

Abstract

The objective of this research is to develop and evaluate a context-aware Augmented Reality system which filters content based on the local context of the surgical instrument. We optically track positions of the patient and the instrument and interpret this data to recognize the phase of the operation. Depending on the result, an appropriate visualization is generated and displayed. For the interpretation, we combine a rule-based, deductive approach and a case-based, inductive one. Both rely on a description-logic based ontology. In phantom experiments the system was used to support implant positioning in models of the mandible. It recognized the phase correctly and provided an appropriate visualization about 85% of the time. The knowledge-based concept for intraoperative assistance proved capable of generating useful visualizations in a timely manner. However, further work is necessary to improve accuracy and reduce the deviation from the actual and planned implant positions.

Keywords

Recognition Rate Augmented Reality Description Logic Situational Awareness Semantic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sielhorst, T., Feuerstein, M., Navab, N.: Advanced Medical Displays: A Literature Review of Augmented Reality IEEE/OSA Journal of Display Technology. Special Issue on Medical Displays (2008)Google Scholar
  2. 2.
    Navab, N., Traub, J., Sielhorst, T., Feuerstein, M., Bichlmeier, C.: Action- and Workflow-Driven Augmented Reality for Computer-Aided Medical Procedures. In: IEEE Computer Graphics and Applications (2007)Google Scholar
  3. 3.
    Blum, T., Padoy, N., Feuner, H., Navab, N.: Modeling and Online Recognition of Surgical Phases using Hidden Markov Models. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 627–635. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Reiley, C.E., Lin, H.C., Varadarajan, B., Vagolgyi, B., Khudanpur, S., Yuh, D.D., Hager, G.D.: Automatic Recognition of Surgical Motions Using Statistical Modeling for Capturing Variability. Medicine Meets Virtual Reality (2008)Google Scholar
  5. 5.
    Bouarfa, L., Jonker, P.P., Dankelman, J.: Surgical context discovery by monitoring low-level activities in the OR. In: M2CAI (2009)Google Scholar
  6. 6.
    Neumuth, T., Mansmann, S., Scholl, M.H., Burgert, O.: Data Warehouse Technology for Surgical Workflow Analysis. In: IEEE Computer-Based Medical Systems (2008)Google Scholar
  7. 7.
    James, A., Vieira, D., Lo, B., Darzi, A., Yang, G.: Eye-Gaze Driven Surgical Workflow Segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 110–117. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Sudra, R., Katic, D., Braun, M., Speidel, S., Castrillon-Oberndorfer, G., Eggers, G., Marmulla, R., Dillmann, R.: Wissensbasierte Modellierung und Situationsinterpretation fuer eine kontextbezogene Chirurgieassistenz. In: GI-LNI (2009)Google Scholar
  9. 9.
    Neumann, B., Moeller, R.: On scene interpretation with description logics. In: Image and Vision Computing, vol. 26 (2008)Google Scholar
  10. 10.
    Sudra, G., Marmulla, R., Salb, T., Ghanai, S., Eggers, G., Giesler, B., Hassfeld, S., Muehling, J., Dillmann, R.: First clinical tests with the augmented reality system INPRES. Studies in Health Technology and Informatics (2005)Google Scholar
  11. 11.
    Sudra, G., Becker, A., Speidel, S., Braun, M., Mueller-Stich, B., Dillmann, R.: Estimating Similarity of Surgical Situations with Case-Retrieval-Nets. In: MMVR (2009)Google Scholar
  12. 12.
    Weisbrod, J.: A New Approach to Fuzzy Reasoning. Soft Computing (1998)Google Scholar
  13. 13.
    Lenz, M., Burkhard, H.: Case Retrieval Nets: Basic Ideas and Extensions. In: 20th Annual German Conference on Artificial Intelligence: Advances in Artificial Intelligence (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. Katić
    • 1
  • G. Sudra
    • 1
  • S. Speidel
    • 1
  • G. Castrillon-Oberndorfer
    • 2
  • G. Eggers
    • 2
  • R. Dillmann
    • 1
  1. 1.Institute for Anthropomatics (IFA),Karlsruhe Institute of Technology (KIT)Humanoids and Intelligence Systems Laboratories (HIS)Germany
  2. 2.Department of Cranio-Maxillofacial SurgeryUniversity of HeidelbergGermany

Personalised recommendations