Advertisement

Automatic Computation of Electrodes Trajectory for Deep Brain Stimulation

  • Caroline Essert
  • Claire Haegelen
  • Pierre Jannin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6326)

Abstract

In this paper, we propose an approach to find the optimal position of an electrode, for assisting surgeons in planning Deep Brain Stimulation. We first show how we formalized the rules governing this surgical procedure into geometric constraints. Then we explain our method, using a formal geometric solver, and a template built from 15 MRIs, used to propose a space of possible solutions and the optimal one. We show our results for the retrospective study on 8 implantations from 4 patients, and compare them with the trajectory of the electrode that was actually implanted. The results show a slight difference with the reference trajectories, with a better evaluation for our proposition.

Keywords

Geometric Constraint Insertion Point Reference Trajectory Soft Constraint Deep Brain Stimulation Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D’Haese, P.F., Cetinkaya, E., Konrad, P.E., Kao, C., Dawant, B.M.: Computer-aided placement of deep brain stimulators: from planningto intraoperative guidance. IEEE Trans. Med. Imaging 24(11), 1469–1478 (2005)CrossRefGoogle Scholar
  2. 2.
    Altrogge, I., Kröger, T., Preusser, T., Büskens, C., Pereira, P., Schmidt, D., Weihusen, A., Peitgen, H.: Towards optimization of probe placement for radio-frequency ablation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 486–493. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Lung, D., Stahovich, T., Rabin, Y.: Computerized planning for multiprobe cryosurgery using a force-field analogy. Comput. Meth. Biomech. Biomed. Eng. 7(2), 101–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Adhami, L., Coste-Manière, E.: Optimal planning for minimally invasive surgical robots. IEEE Transactions on Robotics and Automation 19(5), 854–863 (2003)CrossRefGoogle Scholar
  5. 5.
    Brunenberg, E., Vilanova, A., Visser-Vandewalle, V., Temel, Y., Ackermans, L., Platel, B., ter Haar Romeny, B.: Automatic trajectory planning for deep brain stimulation: A feasibility study. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 584–592. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Baegert, C., Villard, C., Schreck, P., Soler, L.: Multi-criteria trajectory planning for hepatic radiofrequency ablation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 584–592. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Baegert, C., Villard, C., Schreck, P., Soler, L.: Trajectory optimization for the planning of percutaneous radiofrequeny ablation on hepatic tumors. Computer Aided Surgery (2007)Google Scholar
  8. 8.
    Lalys, F., Haegelen, C., Abadie, A., Jannin, P.: Post-operative assessment in deep brain stimulation based on multimodal images: registration workflow and validation. In: Medical Imaging: Vis., Image-Guided Procedures, and Modeling, vol. 7261(1), 72612M. SPIE, San Jose (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Caroline Essert
    • 1
    • 2
    • 3
    • 4
  • Claire Haegelen
    • 2
    • 3
    • 4
    • 5
  • Pierre Jannin
    • 2
    • 3
    • 4
  1. 1.LSIITUniversity of StrasbourgIllkirchFrance
  2. 2.Faculty of MedicineINSERM, U746RennesFrance
  3. 3.INRIA, Centre Rennes - Bretagne AtlantiqueVisAGeS Unit/ProjectRennesFrance
  4. 4.University of Rennes I, CNRS, UMR 6074, IRISARennesFrance
  5. 5.Department of NeurosurgeryPontchaillou University HospitalRennesFrance

Personalised recommendations