Manifold Learning for Image-Based Gating of Intravascular Ultrasound(IVUS) Pullback Sequences

  • Gozde Gul Isguder
  • Gozde Unal
  • Martin Groher
  • Nassir Navab
  • Ali Kemal Kalkan
  • Muzaffer Degertekin
  • Holger Hetterich
  • Johannes Rieber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6326)

Abstract

Intravascular Ultrasound(IVUS) is an imaging technology which provides cross-sectional images of internal coronary vessel structures. The IVUS frames are acquired by pulling the catheter back with a motor running at a constant speed. However, during the pullback, some artifacts occur due to the beating heart. These artifacts cause inaccurate measurements for total vessel and lumen volume and limitation for further processing. Elimination of these artifacts are possible with an ECG (electrocardiogram) signal, which determines the time interval corresponding to a particular phase of the cardiac cycle. However, using ECG signal requires a special gating unit, which causes loss of important information about the vessel, and furthermore, ECG gating function may not be available in all clinical systems. To address this problem, we propose an image-based gating technique based on manifold learning. Quantitative tests are performed on 3 different patients, 6 different pullbacks and 24 different vessel cuts. In order to validate our method, the results of our method are compared to those of ECG-Gating method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruining, N., von Birgelen, C., de Feyter, P.J., Ligthart, J., Li, W., Serruys, P.W., Roelandt, J.: Ecg-gated versus nongated three-dimensional intracoronary ultrasound analysis: Implications for volumetric measurements. Catheterization and Cardiovascular Diagnosis 43, 254–260 (1998)CrossRefGoogle Scholar
  2. 2.
    Arbab-Zadeh, A., DeMaria, A.N., Penny, W., Russo, R., Kimura, B., Bhargava, V.: Axial movement of the intravascular ultrasound probe during the cardiac cycle: Implications for three-dimensional reconstruction and measurements of coronary dimensions. American Heart Journal 138, 865–872 (1999)CrossRefGoogle Scholar
  3. 3.
    de Winter, S.A., Hamers, R., Degertekin, M., Tanabe, K., Lemos, P.A., Serruys, P.W., Roelandt, J.R.T.C., Bruining, N.: A novel retrospective gating method for intracoronary ultrasound images based on image properties. Computers in Cardiology, 13–16 (2003)Google Scholar
  4. 4.
    Zhu, H., Oakeson, K.D., Friedman, M.H.: Retrieval of cardiac phase from IVUS sequences. In: Medical Imaging 2003: Ultrasonic Imaging and Signal Processing, vol. 5035, pp. 135–146 (2003)Google Scholar
  5. 5.
    O’Malley, S.M., Carlier, S.G., Naghavi, M., Kakadiaris, I.A.: Image-based frame gating of IVUS pullbacks: A surrogate for ecg. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2007, April 15-20, vol. 1, pp. I-433–I-436 (2007)Google Scholar
  6. 6.
    O’Malley, S.M., Carlier, S.G., Naghavi, M., Kakadiaris, I.A.: Image-based frame gating for contrast-enhanced IVUS sequences. In: Proceedings of Computer Vision for Intravascular and Intracardiac Imaging (CVII), Copenhagen, Denmark (October 2006)Google Scholar
  7. 7.
    Gatta, C., Pujol, O., Leor, O.R., Ferre, J.M., Radeva, P.: Robust image-based ivus pullbacks gating. Med. Image. Comput. Assist. Interv. Int. 11(Pt 2), 518–525 (2008)Google Scholar
  8. 8.
    Schumacher, A.: Linear and Nonlinear Approaches to the Analysis of R-R Interval Variability. Biological Research For Nursing 5(3), 211–221 (2004)CrossRefGoogle Scholar
  9. 9.
    Malpas, S.C.: Neural influences on cardiovascular variability: possibilities and pitfalls. Am. J. Physiol. Heart. Circ. Physiol. 282(1), H6–H20 (2002)Google Scholar
  10. 10.
    Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319 (2000)CrossRefGoogle Scholar
  11. 11.
    Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  12. 12.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6) (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gozde Gul Isguder
    • 1
  • Gozde Unal
    • 1
  • Martin Groher
    • 2
  • Nassir Navab
    • 2
  • Ali Kemal Kalkan
    • 3
  • Muzaffer Degertekin
    • 3
  • Holger Hetterich
    • 4
  • Johannes Rieber
    • 4
  1. 1.Sabanci University 
  2. 2.Technical University Of Munich 
  3. 3.Yeditepe University Hospital 
  4. 4.Ludwig Maximilian University Hospital 

Personalised recommendations