Advertisement

An Introduction to the Bio-logic of Artificial Creatures

  • Y. Duthen
  • H. Luga
  • N. Lassabe
  • S. Cussat-Blanc
  • T. Breton
  • J. Pascalie
Part of the Studies in Computational Intelligence book series (SCI, volume 321)

Abstract

In this chapter we emphasize the most crucial developments in the design of artificial creatures starting with the seminal work of Karl Sims presented at the SIGGRAPH’94 conference and ending with the latest research in virtual beings based on cell development.

Nowadays much research relies on the same principles in order to generate more and more complex artificial beings but also to advance evolutionary robotics with prototypes capable of self-modeling, self-reproduction and self-assembly. Inspired by biology, this research moves closer to nature paradigms, considering the creature as the result of a developmental process of a single element: a cell. This logic, presented here, as the bio-logic of artificial creature, needs not only newsimulators such as chemical or hydrodynamic environments but also new mechanisms such as an artificial regulatory network to control the development process. Although these new beings are endowed with a very simple metabolism, they are still capable of transforming their local environment in order to grow and to piece together “logical organs”.

Keywords

Cellular Automaton Gene Regulatory Network None None Artificial Life Evolutionary Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Magnenat-Thalmann, N., Thalmann, D.: The Direction of Synthetic Actors in the Film Rendez-vous à Montréal. IEEE Computer Graphics and Applications 7(12), 9–19 (1987)CrossRefGoogle Scholar
  2. 2.
    Laird, J.E., Lent, M.V.: Human-level AI’s killer application: Interactive computer games. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 1171–1178. AAAI Press / The MIT Press (2000)Google Scholar
  3. 3.
    Sims, K.: Evolving Virtual Creatures. In: SIGGRAPH 1994, pp. 15–22 (1994)Google Scholar
  4. 4.
    Fukunaga, A., Marks, J., Ngo, J.T.: Automatic control of physically realistic animated figures using evolutionary programming. In: Proc. of the Third Annual Conference on Evolutionary Programming, pp. 76–83 (1994)Google Scholar
  5. 5.
    Terzopoulos, D., Tu, X., Grzeszczuk, R.: Artificial fishes: Autonomous locomotion, perception, behavior, and learning in a simulated physical world. Artificial Life 1(4), 327–351 (1994)CrossRefGoogle Scholar
  6. 6.
    Cliff, D., Miller, G.F.: Co-evolution of pursuit and evasion II: Simulation methods and results. In: Maes, P., Mataric, M.J., Meyer, J.-A., Pollack, J.B., Wilson, S.W. (eds.) From animals to animats, pp. 506–515, p. 20. MIT Press, Cambridge (1996)Google Scholar
  7. 7.
    Komosinski, M.: The world of framsticks: Simulation, evolution, interaction. In: Heudin, J.-C. (ed.) VW 2000. LNCS (LNAI), vol. 1834, p. 214. Springer, Heidelberg (2000) (pp. 15, 16, 17, 42, 45, 64, 89)CrossRefGoogle Scholar
  8. 8.
    Lassabe, N., Luga, H., Duthen, Y.: A new step for evolving creatures. In: IEEE-ALife 2007, pp. 243–251 (2007)Google Scholar
  9. 9.
    Bornhofen, S., Lattaud, C.: Life History of Virtual Plants: Trading Off Between Growth and Reproduction. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 808–817. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Joachimczak, M., Wrobel, B.: Evolution of the morphology and patterning of artificial embryos: scaling the tricolour problem to the third dimension. In: 10th European Conference on Artificial Life (ECAL 2009). Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Eggenberger Hotz, P.: Combining developmental processes and their physics in an artificial evolutionary systems to evolve shapes. On Growth, Forms and Computers, 302 (2003)Google Scholar
  12. 12.
    Cussat-Blanc, S., Luga, H., Duthen, Y.: From Single Cell to Simple Creature Morphology and Metabolism. Artificial Life. ACM, Winchester (2008)Google Scholar
  13. 13.
    Banzhaf, W.: Artificial regulatory networks and genetic programming. Genetic Programming Theory and Practice, 43–62 (2003)Google Scholar
  14. 14.
    Pfeifer, R., Bongard, J.: ow the body shapes the way we think. MIT Press, Cambridge (2006) ISBN:0262162393Google Scholar
  15. 15.
    Darwin, C.: The origin of species (1859)Google Scholar
  16. 16.
    Taylor, T., Massey, C.: Recent developments in the evolution of morphologies and controllers for physically simulated creatures. Artificial Life 7(1), 77–87 (2000)CrossRefGoogle Scholar
  17. 17.
    Bongard, J., Lipson, H.: Automated robot function recovery after unan-ticipated failure or environmental change using a minimum of hardware trials. In: Procs. of the NASA/DoD Conference on Evolvable Hardware, Seattle, WA (2004)Google Scholar
  18. 18.
    Lipson, H.: Evolutionary robotics and open-ended design automation. In: Cohen, B. (ed.) Biomimetics. CRC Press, Boca Raton (2005)Google Scholar
  19. 19.
    Paul, C., Lipson, H., Valero Cuevas, F.J.: Evolutionary form finding of tensegrity structures. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference, Washington D.C., USA (June 2005)Google Scholar
  20. 20.
    Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries - a review. Artificial Life 7(3), 225–275 (2001)CrossRefGoogle Scholar
  21. 21.
    Ono, N., Ikegami, T.: Model of Self-Replicating Cell Capable of Self-Maintenance. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, p. 399. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Rasmussen, S., Chen, L., Nilsson, M., Abe, S.: Bridging nonliving and living matter. Artificial Life 9(3), 269–316 (2003)CrossRefGoogle Scholar
  23. 23.
    Turing, A.: The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)CrossRefGoogle Scholar
  24. 24.
    Cussat-Blanc, S., Pascalie, J., Luga, H., Duthen, Y.: Morphogen Positioning thanks to a hydrodynamic engine Artificial Life XII (2010)Google Scholar
  25. 25.
    Arthur, W.B.: On Designing Economic Agents that Behave Like Human Agents. Journal of Evolutionary Economics 3, 1–22 (1993)CrossRefGoogle Scholar
  26. 26.
    Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Meyer, J.-A., Wilson, S. (eds.) From Animals to Animats, pp. 356–365. MIT Press, Cambridge (1991)Google Scholar
  27. 27.
    Sims, K.: Evolving 3D Morphology and Behavior by Competition. In: Artificial Life IV Proceedings, pp. 28–39. MIT Press, Cambridge (1994)Google Scholar
  28. 28.
    Meyer, J.A., Husbands, P., Harvey, I.: Evolutionary robotics: A survey of applications and problems. In: Husbands, P., Meyer, J.-A. (eds.) EvoROB/EvoRobot 1998. LNCS, vol. 1468, pp. 1–21. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    Miconi, T., Channon, A.: An Improved System for Artificial Creatures Evolution. In: Rocha, L.M., et al. (eds.) Proceedings of the 10th conference on the simulation and synthesis of living systems (ALIFE X), Bloomington, Indiana, USA, MIT Press, Cambridge (2006)Google Scholar
  30. 30.
    Pollack, J.B., Lipson, H., Hornby, G., Funes, P.: Three generations of automatically designed robots. Artificial Life 7(3), 215–223 (Summer 2001)CrossRefGoogle Scholar
  31. 31.
    Komosinski, M.: The Framsticks system versatile simulator of 3D agents and their evolution. Kybernetes: The International Journal of Systems & Cybernetics 32, 156–173 (2003)CrossRefGoogle Scholar
  32. 32.
    Komosinski, M., Polak, J.: Evolving free-form stick ski jumpers and their neural control systems. In: Proceedings of the National Conference on Evolutionary Computation and Global Optimization, Poland, pp. 103–110 (2009)Google Scholar
  33. 33.
    de Margerie, E., Mouret, J.B., Doncieux, S., Meyer, J.A., Ravasi, T., Martinelli, P., Grand, C.: Flapping-wing flight in bird-sized UAVs for the ROBUR project: from an evolutionary optimization to a real flapping-wing mechanism. In: 7th European Micro Air Vehicle Conference (MAV 2007), Toulouse (2007)Google Scholar
  34. 34.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of artificial lifeforms. Nature 406, 974–978 (2000)CrossRefGoogle Scholar
  35. 35.
    Bongard, J., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Morpho-functional machines: The new species (designing embodied intelligence), pp. 237–258 (2003)Google Scholar
  36. 36.
    Miconi, T.: Evosphere: evolutionary dynamics in a population of fighting virtual creatures. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2008), Hong Kong (2008)Google Scholar
  37. 37.
    Shim, Y.-S., Kim, C.-H.: Generating flying creatures using body-brain co-evolution. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, San Diego, California, July 26-27 (2003)Google Scholar
  38. 38.
    Komosinski, M., Ulatowski, S.: Framsticks: Towards a simulation of a nature-like world, creatures and evolution. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 261–265. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  39. 39.
    Chaumont, N., Egli, R., Adami, C.: Evolving Virtual Creatures and Catapults. Artificial Life 13(2), 139–157 (Spring 2007)CrossRefGoogle Scholar
  40. 40.
    Hornby, G.S., Lipson, H., Pollack, J.B.: Evolution of generative design systems for modular physical robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2001), vol. 4, pp. 4146–4151 (2001)Google Scholar
  41. 41.
    Bongard, J., Zykov, V., Lipson, H.: Resillient Machines Through Continuous Self Modeling. Science 314(5802), 1118–1121 (2006)CrossRefGoogle Scholar
  42. 42.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self–reproducing Machines. Nature 435(7038), 163–164 (2005)CrossRefGoogle Scholar
  43. 43.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron, 7, 4, 442–451 (2002)Google Scholar
  44. 44.
    Bornhofen, S., Lattaud, C.: Competition and evolution in virtual plant communities: a new modeling approach. Natural Computing 8(2), 349–385 (2009)CrossRefGoogle Scholar
  45. 45.
    Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Lavoisier (1990)Google Scholar
  46. 46.
    Rieffel, J., Pollack, J.: Automated assembly as situated development: using artificial ontogenies to evolve buildable 3-d objects. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 99–106 (2005)Google Scholar
  47. 47.
    Lobo, D., Hjelle, D.A., Lipson, H.: Reconfiguration algorithms for robotically manipulatable structures. In: Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms And Robots, ReMAR 2009 (June 2009)Google Scholar
  48. 48.
    Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the ATRON lattice-based self-reconfigurable robot. Autonomous Robots 21(2), 165–183 (2006)CrossRefGoogle Scholar
  49. 49.
    Murata, S., Kurokawa, H.: Self-Reconfigurable Robot: Shape-Changing Cellular Robots Can Exceed Conventional Robot Flexibility. IEEE Robotics & Automation Magazine (March 2007)Google Scholar
  50. 50.
    Mytilinaios, E., Marcus, D., Desnoyer, M., Lipson, H.: Designed and Evolved Blueprints For Physical Self-Replicating Machines. In: Ninth International Conference on Artificial Life (ALIFE IX), pp. 15–20 (2004)Google Scholar
  51. 51.
    Zykov, V., Williams, P., Lassabe, N., Lipson, H.: Molecubes Extended: Diversifying Capabilities of Open-Source Modular Robotics. In: International Conference on Intelligent Robots and Systems, Self-reconfigurable Robots Workshop, IROS (2008)Google Scholar
  52. 52.
    Hjelle, D.A., Lipson, H.: A robotically reconfigurable truss. In: Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, REMAR 2009 (June 2009)Google Scholar
  53. 53.
    Stanley, K., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)CrossRefGoogle Scholar
  54. 54.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theorical Biology 22, 437–467 (1969)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Dellaert, F., Beer, R.: Toward an evolvable model of development for autonomous agent synthesis. In: Artificial Life IV. MIT press, Cambridge (1994)Google Scholar
  56. 56.
    Reil, T.: Dynamics of gene expression in an artificial genome implications for biological and artificial ontogeny. LNCS, pp. 457–466 (1999)Google Scholar
  57. 57.
    Gardner, M.: The fantastic combinations of John Conway’s new solitaire game life. Scientific American 223, 120–123 (1970)CrossRefGoogle Scholar
  58. 58.
    de Garis, H.: Artificial embryology and cellular differentiation. In: Peter, E., Bentley, J. (eds.) Evolutionary Design by Computers, pp. 281–295 (1999)Google Scholar
  59. 59.
    Chavoya, A., Duthen, Y.: A cell pattern generation model based on an extended artificial regulatory network. BioSystems 94(1-2), 95–101 (2008)CrossRefGoogle Scholar
  60. 60.
    Wolpert, L.: The French flag problem: A contribution to the discussion on pattern development and regulation. Towards a theoretical biology 1, 125–133 (1968)Google Scholar
  61. 61.
    Knabe, J., Schilstra, M., Nehaniv, C.: Evolution and morphogenesis of differentiated multicellular organisms: autonomously generated diffusion gradients for positional information. Artificial Life XI (2008)Google Scholar
  62. 62.
    Doursat, R.: Organically grown architectures: Creating decentralized, autonomous systems by embryomorphic engineering. Organic Computing, 167–200 (2008)Google Scholar
  63. 63.
    Stewart, F., Taylor, T., Konidaris, G.: Metamorph: Experimenting with genetic regulatory networks for artificial development. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 108–117. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  64. 64.
    Cussat-Blanc, S., Pascalie, J., Luga, H., Duthen, Y.: Three simulators for growing artificial creatures. In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2010 (2010)Google Scholar
  65. 65.
    Cussat-Blanc, S., Luga, H., Duthen, Y.: Cell2Organ: Self-Repairing Artificial Creatures thanks to a Healthy Metabolism. In: IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim (2009)Google Scholar
  66. 66.
    Zykov, V., Phelps, W., Lassabe, N., Lipson, H.: Molecubes Extended: Diversifying Capabilities of Open-Source Modular Robotics. In: Self-Reconfigurable Robots Workshop, IROS 2008 (2008)Google Scholar
  67. 67.
    Mange, D.: Bio-Inspired Computing Machines. In: Mange, D., Tomassini, M, eds. (1998) ISBN 978-2-88074-371-0Google Scholar
  68. 68.
    Von Neumann, J.: The Theory of Self-reproducing Automata. In: Burks, A. (ed.). Univ. of Illinois Press, Urbana (1966)Google Scholar
  69. 69.
    Ray, T.S.: Population dynamics of digital organisms. In: Langton, C.G. (ed.) Artificial Life II Video Proceedings. Addison Wesley, Redwood City (1991)Google Scholar
  70. 70.
    Ray, T.S.: Evolution and optimization of digital organisms. In: Billingsley, K.R., et al. (eds.) Scientific Excellence in Supercomputing: The IBM 1990 Contest Prize Papers, Athens, GA, 30602, December 1991, pp. 489–531. The Baldwin Press, The University of Georgia (1991)Google Scholar
  71. 71.
    Ventrella, J.: Gene Pool: Exploring the Interaction Between Natural Selection and Sexual Selection. In: Adamatzky, A., Komosinski, M. (eds.) Artificial Life Models in Software. Springer, Heidelberg (2005)Google Scholar
  72. 72.
    Bongard, J., Paul, C.: Investigating morphological symmetry and locomo- tive efficiency using virtual embodied evolution. In: Meyer, J.-A., et al. (eds.) From Animals to Animats: The Sixth International Conference on the Simulation of Adaptive Behaviour (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Y. Duthen
    • 1
  • H. Luga
    • 1
  • N. Lassabe
    • 1
  • S. Cussat-Blanc
    • 1
  • T. Breton
    • 1
  • J. Pascalie
    • 1
  1. 1.VORTEX Research Team, IRIT UMR 5505University of ToulouseFrance

Personalised recommendations