On-Body Chemical Sensors for Monitoring Sweat

  • Shirley Coyle
  • Fernando Benito-Lopez
  • Robert Byrne
  • Dermot Diamond
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 75)


In this paper, we discuss the challenges of performing on-body chemical analysis of body fluids. Wearable chemosensors are a relatively novel implementation, bringing new challenges to the field of wearable sensor technology and body sensor networks. Integration of chemical sensors into a textile substrate is a challenging task, as a chemical reaction must happen for these devices to generate a signal. Furthermore, they often require mixing samples and reagents, which results in waste generation. Therefore a wearable chemosensor must be capable of controlling the movement of these substances for a reaction to occur before generating a signal that can be measured. In this paper, we present the design and development of platforms to collect and analyse sweat in-situ and provide real-time feedback to the wearer. Two approaches are described, the first a textile based approach developed during the EU BIOTEX project. The second improves on this design through miniaturisation of the device by using a micro-fluidic platform. The performance of the developed systems is presented and the relevance of these wearable lab-on-a-chip devices is discussed for personalised healthcare and sports performance.


sweat analysis pH sensor wearable chemo-sensor interactive textiles microfluidic device lab-on-a-chip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axisa, F., Schmitt, P.M., Gehin, C., Delhomme, G., McAdams, E., Dittmar, A.: Flexible Technologies and Smart Clothing for Citizen Medicine, Home Healthcare, and Disease Prevention. IEEE Transactions on Information Technol-ogy in Biomedicine 9(3), 325–336 (2005)CrossRefGoogle Scholar
  2. 2.
    Schreuder-Gibson, H.L., Truong, Q., Walker, J.E., Owens, J.R., Wander, J.D., Jones, W.E.J.: Chemical and Biological Protection and Detection in Fabrics for Protective Clothing. MRS Bulletin, 574–578 (August 2003)Google Scholar
  3. 3.
    Radu, T., Fay, C., Lau, K., Waite, R., Diamond, D.: Wearable sensing application- carbon dioxide monitoring for emergency personnel using wearable sensors. In: Proc. ICESE 2009 - International Conference on Environmental Systems Engineering, Venice, Italy, October 28-30 (2009)Google Scholar
  4. 4.
    Byrne, R., Diamond, D.: Chemo/bio-sensor networks. Nature Materials 5, 421–424 (2006)CrossRefGoogle Scholar
  5. 5.
    Brady, S., Dunne, L., Lynch, A., Smyth, B., Diamond, D.: Wearable Sensors? What is there to sense? Studies in Health Technologies and Informformatics 117, 80–88 (2006)Google Scholar
  6. 6.
    Di Francesco, F., Fuoco, R., Trivella, M.G., Ceccarini, A.: Breath analysis: trends in techniques and clinical applications. Microchemical Journal 79, 405–410 (2005)CrossRefGoogle Scholar
  7. 7.
    Pizzimentia, S., Bugianib, M., Piccionib, P., Hefflera, E., Carossob, A., Guidaa, G., Rolla, G.: Exhaled nitric oxide measurements: Correction equation to compare hand-held device to stationary analyzer Respiratory Medicine, vol. 102(9), pp. 1272–1275 (2008)Google Scholar
  8. 8.
    Zuba, D.: Accuracy and reliability of breath alcohol testing by handheld electrochemical analysers. Forensic Science International 178(2), 29–33 (2008)CrossRefGoogle Scholar
  9. 9.
    Braddock Clarke, S.E., O’Mahony, M.: Techno Textiles, vol. 2. Thames & Hudson Ltd. (2005)Google Scholar
  10. 10.
    Kreyden, O.P., Scheidegger, E.P.: Anatomy of the Sweat Glands, Phar-macology of Botulinum Toxin, and Distinctive Syndromes Associated With Hyperhidrosis. Clinics in Dermatology 22, 40–44 (2004)CrossRefGoogle Scholar
  11. 11.
    Massie, J., Gaskin, K., Van Asperen, P., Wilcken, B.: Sweat testing fol-lowing newborn screening for cystic fibrosis. Pediatric Pulmonology 29(6), 452–456 (2000)CrossRefGoogle Scholar
  12. 12.
    Gibson, L.E., Cooke, R.E.: A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23(3), 545–549 (1959)Google Scholar
  13. 13.
    Lynch, A., Diamond, D., Leader, M.: Point-of-need diagnosis of cystic fibrosis using a potentiometric ion-selective electrode array. The Analyst 125, 2264–2267 (2000)CrossRefGoogle Scholar
  14. 14.
    Brisson, G.R., Boisvert, P., Péronnet, F., Parrault, H., Boisvert, D., Lafond, J.S.: A simple and disposable sweat collector. European Journal of Applied Physiology 63, 269–272 (1991)CrossRefGoogle Scholar
  15. 15.
    Shirreffs, S.M., Maughan, R.J.: Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content. Journal of Applied Physiology 82, 336–341 (1997)Google Scholar
  16. 16.
    Patterson, M., Galloway, S., Nimmo, M.A.: Variations in regional sweat composition in normal human males. Experimental Physiology 85(6), 869–876 (2000)CrossRefGoogle Scholar
  17. 17.
    Dill, D.B., Jones, B.F., Edwards, H.T., Oberg, S.A.: Salt economy in extreme dry heat. The Journal of Biological Chemistry, 755–767 (1933)Google Scholar
  18. 18.
    Lemon, P.W., Yarasheski, K.E.: Feasibility of sweat collection by whole body washdown in moderate to high humidity environments. International Journal of Sports Medicine 6(1), 41–43 (1985)CrossRefGoogle Scholar
  19. 19.
    Kidwell, D.A., Holland, J.C., Athanaselis, S.: Testing for drugs of abuse in saliva and sweat. Journal of Chromatography B 713, 111–135 (1998)CrossRefGoogle Scholar
  20. 20.
    Rianon, N., Feeback, D., Wood, R., Driscoll, T., Shackelford, L., LeBlanc, A.: Monitoring sweat calcium using skin patches. Calcified Tissue International 72(6), 694–697 (2003)CrossRefGoogle Scholar
  21. 21.
    Sorger, P.K.: Microfluidics closes in on point-of-care assays. Nature Bio-technology 26(12), 1345–1346 (2008)CrossRefGoogle Scholar
  22. 22.
    Green, F.J.: The Sigma Aldrich Handbook of Stains, Dyes and Indicators (1990)Google Scholar
  23. 23.
    Casa, D., Armstrong, L.E., Hillman, S., Montain, S.J., Reiff, R., Rich, B.S.E., Roberts, W.O., Stone, J.: National Athletic Trainers’ Association Position Statement:Fluid Replacement for Athletes. Journal of Athletic Training 35(2), 212–224 (2000)Google Scholar
  24. 24.
    Maughan, R.J., Shirreffs, S.M.: Development of individual hydration strategies for athletes. International Journal of Sport Nutrition and Exercise Metabolism 18(5), 457–472 (2008)Google Scholar
  25. 25.
    Maughan, R.: Nutrition in sport. Encyclopedia of sports medicine; v.7. Oxford, Malden (2000)Google Scholar
  26. 26.
    Wallace, G., Diamond, D., Lau, K., Coyle, S., Wu, Y., Morris, D.: Flow Analysis Apparatus and Method, U.S Patent Application No. 20080213133 (2008)Google Scholar
  27. 27.
    Ohno, K., Tachikawa, K., Manz, A.: Microfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29, 4443–4453 (2008)CrossRefGoogle Scholar
  28. 28.
    O’Neill, S., Conway, S., Twellmeyer, J., Egan, O., Nolan, K., Diamond, D.: Ion-selective optode membranes using 9-(4-diethylamino-2-octadecanoatestyryl)-acridine acidochromic dye. Anal Chim Acta 398, 1–11 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shirley Coyle
    • 1
  • Fernando Benito-Lopez
    • 1
  • Robert Byrne
    • 1
  • Dermot Diamond
    • 1
  1. 1.CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor ResearchDublin City UniversityDublin 9Ireland

Personalised recommendations