Rational Closure for Defeasible Description Logics

  • Giovanni Casini
  • Umberto Straccia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6341)

Abstract

In the field of non-monotonic logics, the notion of rational closure is acknowledged as a landmark, and we are going to see that such a construction can be characterised by means of a simple method in the context of propositional logic. We then propose an application of our approach to rational closure in the field of Description Logics, an important knowledge representation formalism, and provide a simple decision procedure for this case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Hollunder, B.: How to prefer more specific defaults in terminological default logic. In: Proc. of IJCAI, pp. 669–674. Morgan Kaufmann, San Francisco (1993)Google Scholar
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of IJCAI, pp. 364–369. Morgan Kaufmann, San Francisco (2005)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  4. 4.
    Baader, F., Hollunder, B.: Embedding defaults into terminological representation systems. J. Automated Reasoning 14, 149–180 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. Automated Reasoning 15, 41–68 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bochman, A.: A logical theory of nonmonotonic inference and belief change. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs: Preliminary notes. In: Proc. of IJCAI, pp. 696–701. Morgan Kaufmann, San Francisco (2009)Google Scholar
  8. 8.
    Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of KR, pp. 400–410. AAAI Press, Menlo Park (2006)Google Scholar
  9. 9.
    Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in description logic. J. Artif. Int. Res. 35(1), 717–773 (2009)MathSciNetMATHGoogle Scholar
  10. 10.
    Brewka, G.: The logic of inheritance in frame systems. In: Proc. of IJCAI, pp. 483–488 (1987)Google Scholar
  11. 11.
    Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Proc. of KR, pp. 476–484. Morgan Kaufmann, San Francisco (2008)Google Scholar
  12. 12.
    Britz, K., Heidema, J., Meyer, T.: Modelling object typicality in description logics. In: Proc. of the Australasian Joint Conf. on Advances in Artificial Intelligence, pp. 506–516. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Cadoli, M., Donini, F.M., Schaerf, M.: Closed world reasoning in hybrid systems. In: Proc. of ISMIS, pp. 474–481. North-Holland Publ. Co., Amsterdam (1990)Google Scholar
  14. 14.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: Adding epistemic operators to concept languages. In: Proc. of KR, pp. 342–353. Morgan Kaufmann, San Francisco (1992)Google Scholar
  15. 15.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artificial Intelligence 100(1-2), 225–274 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Donini, F.M., Massacci, F.: Exptime tableaux for \(\mathcal{ALC}\). Artificial Intelligence 124(1), 87–138 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Donini, F.M., Nardi, D., Rosati, R.: Autoepistemic description logics. In: Proc. of IJCAI, pp. 136–141 (1997)Google Scholar
  18. 18.
    Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Logic 3(2), 177–225 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Freund, M.: Preferential reasoning in the perspective of Poole default logic. Artif. Intell. 98(1-2), 209–235 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.): Handbook of logic in artificial intelligence and logic programming. Nonmonotonic reasoning and uncertain reasoning, vol. 3. Oxford University Press, Oxford (1994)MATHGoogle Scholar
  21. 21.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Preferential description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 257–272. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Reasoning about typicality in preferential description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: On extending description logics for reasoning about typicality: a first step. Technical Report 116/09, Università degli studi di Torino (December 2009)Google Scholar
  24. 24.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Prototypical reasoning with low complexity description logics: Preliminary results. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 430–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Grimm, S., Hitzler, P.: A preferential tableaux calculus for circumscriptive \(\mathcal{ALCO}\). In: Proc. of RR, pp. 40–54. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1-2), 167–207 (1990)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Lambrix, P., Shahmehri, N., Wahlloef, N.: A default extension to description logics for use in an intelligent search engine. In: Proc. of HICSS, vol. 5, p. 28. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  28. 28.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Makinson, D.: General patterns in nonmonotonic reasoning. In: Handbook of logic in artificial intelligence and logic programming: Nonmonotonic reasoning and uncertain reasoning, vol. 3, pp. 35–110. Oxford University Press, Oxford (1994)Google Scholar
  30. 30.
    Makinson, D.: Bridges from Classical to Nonmonotonic Logic. King’s College Publications, London (2005)MATHGoogle Scholar
  31. 31.
    Padgham, L., Nebel, B.: Combining classification and non-monotonic inheritance reasoning: A first step. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  32. 32.
    Padgham, L., Zhang, T.: A terminological logic with defaults: A definition and an application. In: Proc. of IJCAI, pp. 662–668. Morgan Kaufmann, San Francisco (1993)Google Scholar
  33. 33.
    Poole, D.: A logical framework for default reasoning. Artif. Intell. 36(1), 27–47 (1988)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Quantz, J., Royer, V.: A preference semantics for defaults in terminological logics. In: Proc. of KR, pp. 294–305. Morgan Kaufmann, San Francisco (1992)Google Scholar
  35. 35.
    Rector, A.L.: Defaults, context, and knowledge: Alternatives for owl-indexed knowledge bases. In: Pacific Symposium on Biocomputing, pp. 226–237. World Scientific, Singapore (2004)Google Scholar
  36. 36.
    Straccia, U.: Default inheritance reasoning in hybrid KL-ONE-style logics. In: Proc. of IJCAI, pp. 676–681. Morgan Kaufmann, San Francisco (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giovanni Casini
    • 1
  • Umberto Straccia
    • 2
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR)PisaItaly

Personalised recommendations