A Decidable Constructive Description Logic

  • Loris Bozzato
  • Mauro Ferrari
  • Camillo Fiorentini
  • Guido Fiorino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6341)


Recently, there has been a growing interest in constructive reinterpretations of description logics. This has been motivated by the need to model in the DLs setting problems that have a consolidate tradition in constructive logics. In this paper we introduce a constructive description logic for the language of \({\cal ALC}\) based on the Kripke semantics for Intuitionistic Logic. Moreover we give a tableau calculus and we show that it is sound, complete and terminating.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Logic J. of the IGPL 7(4), 447–480 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baader, F., Nutt, W.: Basic description logics. In: [7], pp. 43–95Google Scholar
  3. 3.
    Bozzato, L., Ferrari, M., Fiorentini, C., Fiorino, G.: A constructive semantics for \(\mathcal{ALC}\). In: Calvanese, D., et al. (eds.) 2007 International Workshop on Description Logics. CEUR Proceedings, vol. 250, pp. 219–226 (2007)Google Scholar
  4. 4.
    Bozzato, L., Ferrari, M., Villa, P.: Actions over a constructive semantics for \(\mathcal{ALC}\). In: Baader, F., et al. (eds.) 2008 International Workshop on Description Logics. CEUR Proceedings, vol. 353 (2008)Google Scholar
  5. 5.
    Bozzato, L., Ferrari, M., Villa, P.: A note on constructive semantics for description logics. In: 24-esimo Convegno Italiano di Logica Computazionale (2009), http://www.ing.unife.it/eventi/cilc09/accepted.shtml
  6. 6.
    de Paiva, V.: Constructive description logics: what, why and how. Technical report, Xerox Parc (2003)Google Scholar
  7. 7.
    Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  8. 8.
    Ferrari, M., Fiorentini, C., Fiorino, G.: BCDL: Basic Constructive Description Logic. J. of Automated Reasoning 44(4), 371–399 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fitting, M.C.: Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrechtz (1983)Google Scholar
  10. 10.
    Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. Studies in logic and the foundations of mathematics. North-Holland, Amsterdam (2003)MATHGoogle Scholar
  11. 11.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Logic J. of the IGPL 8(3), 239–264 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kaneiwa, K.: Negations in description logic - contraries, contradictories, and subcontraries. In: Proc. of the 13th International Conference on Conceptual Structures (ICCS 2005), pp. 66–79. Kassel University Press (2005)Google Scholar
  13. 13.
    Mendler, M., Scheele, S.: Towards Constructive DL for Abstraction and Refinement. J. of Automated Reasoning 44(3), 207–243 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. Part II: A tableau algorithm for CALC C. J. of Applied Logic 6(3), 343–360 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Loris Bozzato
    • 1
  • Mauro Ferrari
    • 1
  • Camillo Fiorentini
    • 2
  • Guido Fiorino
    • 3
  1. 1.DICOMUniv. degli Studi dell’InsubriaVareseItaly
  2. 2.DSIUniv. degli Studi di MilanoMilanoItaly
  3. 3.DIMEQUANTUniv. degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations