Decomposition of Distributed Nonmonotonic Multi-Context Systems

  • Seif El-Din Bairakdar
  • Minh Dao-Tran
  • Thomas Eiter
  • Michael Fink
  • Thomas Krennwallner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6341)


Multi-Context Systems (MCS) are formalisms that enable the interlinkage of single knowledge bases, called contexts, via bridge rules. Recently, a fully distributed algorithm for evaluating heterogeneous, nonmonotonic MCS was described in [7]. In this paper, we continue this line of work and present a decomposition technique for MCS which analyzes the topology of an MCS. It applies pruning techniques to get economically small representations of context dependencies. Orthogonal to this, we characterize minimal interfaces for information exchange between contexts, such that data transmissions can be minimized. We then present a novel evaluation algorithm that operates on a query plan which is compiled with topology pruning and interface minimization. The effectiveness of the optimization techniques is demonstrated by a prototype implementation, which uses an off-the-shelf SAT solver and shows encouraging experimental results.


Belief State Partial Equilibrium Query Plan Biconnected Component Interface Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed reasoning in a peer-to-peer setting: Application to the semantic web. J. Artif. Intell. Res. 25, 269–314 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baget, J.F., Tognetti, Y.: Backtracking through biconnected components of a constraint graph. In: IJCAI 2001, pp. 291–296. Morgan Kaufmann, San Francisco (2001)Google Scholar
  3. 3.
    Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in ambient intelligence. Knowl. Inf. Syst. (April 2010) (published online: April 9, 2010)Google Scholar
  4. 4.
    Bondy, A., Murty, U.S.R.: Graph Theory. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (July 2007)Google Scholar
  6. 6.
    Buccafurri, F., Caminiti, G.: Logic programming with social features. Theory Pract. Log. Program. 8(5-6), 643–690 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context systems. In: KR 2010, pp. 60–70. AAAI Press, Menlo Park (2010)Google Scholar
  8. 8.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: IJCAI 2007, pp. 386–392. AAAI Press, Menlo Park (2007)Google Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3-4), 365–385 (1991)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning = locality + compatibility. Artif. Intell. 127(2), 221–259 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without modal logics. Artif. Intell. 65(1), 29–70 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McCarthy, J.: Notes on formalizing context. In: IJCAI 1993, pp. 555–562 (1993)Google Scholar
  13. 13.
    Roelofsen, F., Serafini, L., Cimatti, A.: Many Hands Make LightWork: Localized Satisfiability for Multi-Context Systems. In: ECAI 2004, pp. 58–62. IOS Press, Amsterdam (2004)Google Scholar
  14. 14.
    Serafini, L., Borgida, A., Tamilin, A.: Aspects of distributed and modular ontology reasoning. In: IJCAI 2005, pp. 570–575. AAAI Press, Menlo Park (2005)Google Scholar
  15. 15.
    Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 361–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Seif El-Din Bairakdar
    • 1
  • Minh Dao-Tran
    • 1
  • Thomas Eiter
    • 1
  • Michael Fink
    • 1
  • Thomas Krennwallner
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations