Advertisement

The DMCS Solver for Distributed Nonmonotonic Multi-Context Systems

  • Seif El-Din Bairakdar
  • Minh Dao-Tran
  • Thomas Eiter
  • Michael Fink
  • Thomas Krennwallner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6341)

Abstract

The DMCS system is an implementation of the equilibrium semantics for heterogeneous and nonmonotonic multi-context systems (MCS) [3], which feature contexts with heterogeneous and possibly nonmonotonic logics. Each context in an MCS comprises of two parts: a local knowledge base and a set of bridge rules that can access the beliefs of other contexts and add new information to the knowledge base. In this setting, contexts are loosely coupled, and may model distributed information linkage applications; thus it is natural to have a system that allows for the distributed evaluation of MCS.

Keywords

Belief State Partial Equilibrium Query Plan Loop Formula Nonmonotonic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bairakdar, S., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Decomposition of distributed nonmonotonic multi-context systems. In: JELIA 2010. Springer, Heidelberg (September 2010)Google Scholar
  2. 2.
    Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in ambient intelligence. Knowl. Inf. Syst. (2010) (published online: April 9, 2010)Google Scholar
  3. 3.
    Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (July 2007)Google Scholar
  4. 4.
    Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context systems. In: KR 2010, pp. 60–70. AAAI Press, Menlo Park (May 2010)Google Scholar
  5. 5.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: IJCAI 2007, pp. 386–392. AAAI Press, Menlo Park (January 2007)Google Scholar
  6. 6.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 361–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Seif El-Din Bairakdar
    • 1
  • Minh Dao-Tran
    • 1
  • Thomas Eiter
    • 1
  • Michael Fink
    • 1
  • Thomas Krennwallner
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations