Advertisement

Stable Belief Sets Revisited

  • Costas D. Koutras
  • Yorgos Zikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6341)

Abstract

Stable belief sets were introduced by R. Stalnaker in the early ‘80s, as a formal representation of the epistemic state for an ideal introspective agent. This notion motivated Moore’s autoepistemic logic and greatly influenced modal nonmonotonic reasoning. Stalnaker stable sets possess an undoubtly simple and intuitive definition and can be elegantly characterized in terms of S5 universal models or KD45 situations. However, they do model an extremely perfect introspective reasoner and suffer from a Knowledge Representation (KR) version of the logical omniscience problem. In this paper, we vary the context rules underlying the positive and/or negative introspection conditions in the original definition of R. Stalnaker, to obtain variant notions of a stable epistemic state, which appear to be more plausible under the epistemic viewpoint. For these alternative notions of stable belief set, we obtain representation theorems using possible world models with non-normal (impossible) worlds and neighborhood modal models.

Keywords

modal epistemic logic stable belief sets nonmonotonic logics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amati, G., Carlucci Aiello, L., Pirri, F.: Intuitionistic autoepistemic logic. Studia Logica 59 (1997)Google Scholar
  2. 2.
    Aucher, G.: An internal version of epistemic logic. Studia Logica 94(1), 1–22 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press, Cambridge (1980)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (2003)zbMATHGoogle Scholar
  6. 6.
    Fitting, M.C.: Basic Modal Logic. In: Gabbay, et al. (eds.) [7], vol. 1, pp. 368–448 (1993)Google Scholar
  7. 7.
    Gabbay, D.M., Hogger, C.J., Robinson, J.A.: Handbook of Logic in Artificial Intelligence and Logic Programming. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  8. 8.
    Halpern, J.: A critical reexamination of default logic, autoepistemic logic and only-knowing. Computational Intelligence 13(1), 144–163 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54(2), 319–379 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Halpern, J.Y.: A theory of knowledge and ignorance for many agents. Journal of Logic and Computation 7(1), 79–108 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood Structures: Bisimilarity and Basic Model Theory. Logical Methods in Computer Science 5(2:2), 1–38 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hintikka, J.: Knowledge and Belief: an Introduction to the Logic of the two notions. Cornell University Press, Ithaca (1962)Google Scholar
  13. 13.
    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge (1996)Google Scholar
  14. 14.
    Jaspars, J.: A generalization of stability and its application to circumscription of positive introspective knowledge. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 289–299. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  15. 15.
    Koutras, C.D., Zikos, Y.: On a modal epistemic axiom emerging from McDermott-Doyle logics. Fundamenta Informaticae 96(1–2), 111–125 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Koutras, C. D., Zikos, Y.: Stable belief sets revisited, Technical Report, draft version (May 2010), available through the authors’ web pages, in particular, http://users.att.sch.gr/zikos/index/logic/KZ-SBSr-extended.pdf
  17. 17.
    Lenzen, W.: Recent Work in Epistemic Logic. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  18. 18.
    Lenzen, W.: Epistemologische Betractungen zu [S4,S5]. Erkenntnis 14, 33–56 (1979)CrossRefGoogle Scholar
  19. 19.
    Lakemeyer, G., Levesque, H.J.: A Tractable Knowledge Representation Service with Full Introspection. In: Vardi, M. (ed.) Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge, TARK 1988, pp. 145–159. Morgan Kaufmann, San Francisco (1988)Google Scholar
  20. 20.
    Marek, V.W., Schwarz, G.F., Truszczyński, M.: Modal non-monotonic logics: Ranges, characterization, computation. Journal of the ACM 40, 963–990 (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Marek, V.W., Truszczyński, M.: Non-Monotonic Logic: Context-dependent Reasoning. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  22. 22.
    McDermott, D., Doyle, J.: Non-monotonic logic I. Artificial Intelligence 13, 41–72 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Moore, R.C.: Semantical considerations on non-monotonic logics. Artificial Intelligence 25, 75–94 (1985)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Segerberg, K.: An essay in Clasical Modal Logic. Filosofiska Studies, Uppsala (1971)zbMATHGoogle Scholar
  25. 25.
    Stalnaker, R.: A note on non-monotonic modal logic. Artificial Intelligence 64, 183–196 (1993), Revised version of the unpublished note originally circulated in 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Costas D. Koutras
    • 1
  • Yorgos Zikos
    • 2
  1. 1.Department of Computer Science and TechnologyUniversity of PeloponneseTripolisGreece
  2. 2.Graduate Programme in Logic, Algorithms and Computation (MPLA), Department of MathematicsUniversity of Athens, PanepistimioupolisIlissiaGreece

Personalised recommendations