A Logical Semantics for Description Logic Programs

  • Michael Fink
  • David Pearce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6341)

Abstract

We present a new semantics for Description Logic programs [1] (dl-programs) that combine reasoning about ontologies in description logics with non-monotonic rules interpreted under answer set semantics. Our semantics is equivalent to that of [1], but is more logical in style, being based on the logic QHT of quantified here-and-there that provides a foundation for ordinary logic programs under answer set semantics and removes the need for program reducts. Here we extend the concept of QHT-model to encompass dl-programs. As an application we characterise some logical relations between dl-programs, by mating the idea of QHT-equivalence with the concept of query inseparability taken from description logics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: KR, pp. 141–151. AAAI Press, Menlo Park (2004)Google Scholar
  2. 2.
    Rosati, R.: Dl+log: Tight integration of description logics and disjunctive datalog. In: KR, pp. 68–78. AAAI Press, Menlo Park (2006)Google Scholar
  3. 3.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web Sem. 3(1), 61–73 (2005)Google Scholar
  4. 4.
    Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded hybrid knowledge bases. TPLP 8(3), 411–429 (2008)MATHGoogle Scholar
  6. 6.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: IJCAI, pp. 90–96 (2005)Google Scholar
  7. 7.
    Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 546–560. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Pearce, D.: Equilibrium logic. AMAI 47(1-2), 3–41 (2006)MATHMathSciNetGoogle Scholar
  9. 9.
    Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic \(\mathcal{EL}\). In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 84–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics. In: IJCAI, pp. 453–458 (2007)Google Scholar
  11. 11.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between dl-lite ontologies? In: KR, pp. 285–295. AAAI Press, Menlo Park (2008)Google Scholar
  12. 12.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM TOCL 2(4), 526–541 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fink, M.: A general framework for equivalences in answer-set programming by countermodels in the logic of here-and-there. In: TPLP (2010) (forthcoming)Google Scholar
  14. 14.
    Fink, M.: Equivalences in answer-set programming by countermodels in the logic of here-and-there. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 99–113. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Pearce, D., Valverde, A.: Quantified equilibrium logic an the first order logic of here-and-there. Technical Report MA-06-02, Univ. Rey Juan Carlos (2006)Google Scholar
  18. 18.
    van Dalen, D.: Logic and Structure, 4th edn. Springer, Heidelberg (2004)MATHGoogle Scholar
  19. 19.
    Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming with guarded programs. ACM TOCL 9(4) (2008)Google Scholar
  21. 21.
    Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: IJCAI, pp. 372–379 (2007)Google Scholar
  22. 22.
    Pearce, D., Valverde, A.: A first order nonmonotonic extension of constructive logic. Studia Logica 80(2-3), 321–346 (2005)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. AIJ 172(12-13), 1495–1539 (2008)MATHMathSciNetGoogle Scholar
  24. 24.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  25. 25.
    Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description logic el. J. Symb. Comput. 45(2), 194–228 (2010)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: A logic-based framework for ontology comparison and module extraction in dl-lite (2010) (submitted)Google Scholar
  27. 27.
    Fink, M., Pearce, D.: Some equivalence concepts for hybrid theories. In: CAEPIA, Spanish Association for Artifical Intelligence, pp. 327–336 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Fink
    • 1
  • David Pearce
    • 2
  1. 1.Vienna University of TechnologyAustria
  2. 2.Universidad Politcnica de MadridSpain

Personalised recommendations