Advertisement

Stressed Web Environments as Strategic Games: Risk Profiles and Weltanschauung

  • Joaquim Gabarro
  • Peter Kilpatrick
  • Maria Serna
  • Alan Stewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6084)

Abstract

We consider the behaviour of a set of services in a stressed web environment where performance patterns may be difficult to predict. In stressed environments the performances of some providers may degrade while the performances of others, with elastic resources, may improve. The allocation of web-based providers to users (brokering) is modelled by a strategic non-cooperative angel-daemon game with risk profiles. A risk profile specifies a bound on the number of unreliable service providers within an environment without identifying the names of these providers. Risk profiles offer a means of analysing the behaviour of broker agents which allocate service providers to users. A Nash equilibrium is a fixed point of such a game in which no user can locally improve their choice of provider – thus, a Nash equilibrium is a viable solution to the provider/user allocation problem. Angel daemon games provide a means of reasoning about stressed environments and offer the possibility of designing brokers using risk profiles and Nash equilibria.

Keywords

Nash Equilibrium Social Cost Allocation Problem Resource Allocation Problem Delay Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babaioff, M., Kleinberg, K., Papadimitriou, C.: Congestion games with malicious players. In: ACM Conference on Electronic Commerce, pp. 103–112 (2007)Google Scholar
  2. 2.
    Baraglia, R., Laforenza, D., Ferrini, R., Adami, D., Giordano, S., Yahyapour, R.: A study on network resources management in grids. In: CoreGRID-IW, pp. 213–224 (2006)Google Scholar
  3. 3.
    Gabarro, J., García, A., Clint, M., Stewart, A., Kilpatrick, P.: Bounded Site Failures: an Approach to Unreliable Grid Environments. In: Danelutto, M., Fragopoulou, P., Getov, V. (eds.) Making Grid Works, pp. 175–187. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Gabarro, J., García, A., Serna, M.: On the Complexity of Equilibria Problems in Angel-Daemon Games. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 31–40. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Gabarro, J., García Serna, M., Stewart, A., Kilpatrick, P.: Analysing Orchestrations with Risk Profiles and Angel daemon Games. In: Gorlatch, S., Fragopoulou, P., Priol, T. (eds.) Grid Computing Achievements and Prospects, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Osborne, M., Rubinstein, A.: A Course on Game Theory. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Oxford Dictionaries, http://www.askoxford.com/?view=uk
  8. 8.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory, Cambridge (2007)Google Scholar
  9. 9.
    Penn, M., Maria Polukarov, M., Tennenholtz, M.: Congestion games with failures. In: ACM Conference on Electronic Commerce, pp. 259–268 (2005)Google Scholar
  10. 10.
    Penn, M., Maria Polukarov, M., Tennenholtz, M.: Congestion games with load-dependent failures: identical resources. In: ACM Conference on Electronic Commerce, pp. 210–217 (2007)Google Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joaquim Gabarro
    • 1
  • Peter Kilpatrick
    • 2
  • Maria Serna
    • 1
  • Alan Stewart
    • 2
  1. 1.ALBCOM, LSI Dept.Universitat Politècnica de CatalunyaBarcelona
  2. 2.School of Computer ScienceThe Queen’s University of BelfastBelfast

Personalised recommendations