Structuring Acyclic Process Models

  • Artem Polyvyanyy
  • Luciano García-Bañuelos
  • Marlon Dumas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6336)

Abstract

This paper addresses the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method to structure any process model that belongs to this class. This paper fills this gap in the context of acyclic process models. The paper defines a necessary and sufficient condition for an unstructured process model to have an equivalent structured model under fully concurrent bisimulation, as well as a complete structuring method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Laue, R., Mendling, J.: The Impact of Structuredness on Error Probability of Process Models. In: UNISCON. LNBIP, vol. 5, pp. 585–590. Springer, Heidelberg (1974)Google Scholar
  3. 3.
    Laguna, M., Marklund, J.: Business Process Modeling, Simulation, and Design. Prentice Hall, Englewood Cliffs (2005)Google Scholar
  4. 4.
    Combi, C., Posenato, R.: Controllability in Temporal Conceptual Workflow Schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379–387 (1982)MATHGoogle Scholar
  6. 6.
    Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 268–284. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: An Incremental Approach to the Analysis and Transformation of Workflows Using Region Trees. IEEE Transactions on Systems, Man, and Cybernetics, Part C 38(3), 347–359 (2008)CrossRefGoogle Scholar
  8. 8.
    Polyvyanyy, A., García-Bañuelos, L., Weske, M.: Unveiling Hidden Unstructured Regions in Process Models. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 340–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 317–336. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Koehler, J., Hauser, R.: Untangling Unstructured Cyclic Flows - A Solution Based on Continuations. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 121–138. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Mendling, J.: From business process models to process-oriented software systems. ACM Trans. Softw. Eng. Methodol. 19(1) (2009)Google Scholar
  12. 12.
    Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of Control Flow in Workflows. Acta Inf. 39(3), 143–209 (2003)MATHCrossRefGoogle Scholar
  13. 13.
    Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data & Knowledge Engineering 68(9), 793–818 (2009)CrossRefGoogle Scholar
  14. 14.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. Technical Report RZ 3745, IBM (2009)Google Scholar
  15. 15.
    van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) BPM 2000. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Abstract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)Google Scholar
  18. 18.
    Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent bisimulations in petri nets. Acta Inf. 28(3), 231–264 (1991)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs. Discrete Applied Mathematics 145(2), 198–209 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Algorithm. FMSD 20(3), 285–310 (2002)MATHGoogle Scholar
  21. 21.
    Kondratyev, A., Kishinevsky, M., Taubin, A., Ten, S.: Analysis of Petri Nets by Ordering Relations in Reduced Unfoldings. FMSD 12(1), 5–38 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Artem Polyvyanyy
    • 1
  • Luciano García-Bañuelos
    • 2
  • Marlon Dumas
    • 2
  1. 1.Hasso Plattner Institute at the University of Potsdam, Germany 
  2. 2.Institute of Computer ScienceUniversity of TartuEstonia

Personalised recommendations