Advertisement

Supporting the Design of General Automated Negotiators

  • Raz Lin
  • Sarit Kraus
  • Dmytro Tykhonov
  • Koen Hindriks
  • Catholijn M. Jonker
Part of the Studies in Computational Intelligence book series (SCI, volume 319)

Summary

The design of automated negotiators has been the focus of abundant research in recent years. However, due to difficulties involved in creating generalized agents that can negotiate in several domains and against human counterparts, many automated negotiators are domain specific and their behavior cannot be generalized for other domains. Some of these difficulties arise from the differences inherent within the domains, the need to understand and learn negotiators’ diverse preferences concerning issues of the domain and the different strategies negotiators can undertake. In this paper we present a system that enables alleviation of the difficulties in the design process of general automated negotiators termed Genius, a General Environment for Negotiation with Intelligent multi-purpose Usage Simulation. With the constant introduction of new domains, e-commerce and other applications, which require automated negotiations, generic automated negotiators encompass many benefits and advantages over agents that are designed for a specific domain. Based on experiments conducted with automated agents designed by human subjects using Genius we provide both quantitative and qualitative results to illustrate its efficacy. Our results show the advantages and underlying benefits of using Genius for designing general automated negotiators.

Keywords

Average Utility Negotiation Strategy Bilateral Negotiation Automate Negotiation Analytical Toolbox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazerman, M.H., Neale, M.A.: Negotiator rationality and negotiator cognition: The interactive roles of prescriptive and descriptive research. In: Young, H.P. (ed.) Negotiation Analysis, pp. 109–130. The University of Michigan Press (1992)Google Scholar
  2. 2.
    Devaux, L., Paraschiv, C.: Bargaining on an internet agent-based market: Behavioral vs. optimizing agents. Electronic Commerce Research 1, 371–401 (2001)CrossRefGoogle Scholar
  3. 3.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Int. Journal of Robotics and Autonomous Systems 24(3-4), 159–182 (1998)CrossRefGoogle Scholar
  4. 4.
    Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make trade-offs in automated negotiations. AIJ 142(2), 205–237 (2002)MathSciNetGoogle Scholar
  5. 5.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: A comparative study of game theoretic and evolutionary models of bargaining for software agents. Artificial Intelligence Review 23(2), 187–205 (2005)CrossRefGoogle Scholar
  6. 6.
    Ficici, S., Pfeffer, A.: Modeling how humans reason about others with partial information. In: Proceedings of AAMAS 2008, pp. 315–322 (2008)Google Scholar
  7. 7.
    Hales, D.: Neg-o-net - a negotiation simulation test-bed. Technical Report CPM-02-109, CPM (April 2002)Google Scholar
  8. 8.
    Henderson, P., Crouch, S., Walters, R.J., Ni, Q.: Comparison of some negotiation algorithms using a tournament-based approach. In: Agent Technologies, Infrastructures, Tools, and Applications for E-Services, pp. 137–150 (2008)Google Scholar
  9. 9.
    Hindriks, K., Jonker, C., Tykhonov, D.: Negotiation dynamics: Analysis, concession tactics, and outcomes. In: Proceedings of IAT 2007, pp. 427–433 (2007)Google Scholar
  10. 10.
    Hindriks, K., Jonker, C., Tykhonov, D.: Towards an open negotiation architecture for heterogeneous agents. In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 264–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Hindriks, K., Tykhonov, D.: Opponent modelling in automated multi-issue negotiation using bayesian learning. In: Proceedings of AAMAS 2008, pp. 331–338 (2008)Google Scholar
  12. 12.
    Hindriks, K., Tykhonov, D.: Towards a quality assessment method for learning preference profiles in negotiation. In: Proceeding of Workshop on Agent-based Complex Automated Negotiations, pp. 64–71 (2008)Google Scholar
  13. 13.
    Jonker, C., Treur, J.: An agent architecture for multi-attribute negotiation. In: Proceedings of IJCAI 2001, pp. 1195–1201 (2001)Google Scholar
  14. 14.
    Jonker, C.M., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using incomplete preference information. JAAMAS 15(2), 221–252 (2007)Google Scholar
  15. 15.
    Karp, A.H., Wu, R., Yut Chen, K., Zhang, A.: A game tree strategy for automated negotiation. Technical Report HPL-2003-154 (2003)Google Scholar
  16. 16.
    Keeney, R., Raiffa, H.: Decisions with Multiple Objective: Preferences and Value Tradeoffs. John Wiley & Sons, NY (1976)Google Scholar
  17. 17.
    Kersten, G.E., Noronha, S.J.: Www-based negotiation support: design, implementation, and use. Decision Support Systems 25(2), 135–154 (1999)CrossRefGoogle Scholar
  18. 18.
    Kraus, S.: Strategic Negotiation in Multi-Agent Environments. The MIT Press, Cambridge (2001)Google Scholar
  19. 19.
    Kraus, S., Hoz-Weiss, P., Wilkenfeld, J., Andersen, D.R., Pate, A.: Resolving crises through automated bilateral negotiations. AIJ 172(1), 1–18 (2008)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Kraus, S., Lehmann, D.: Designing and building a negotiating automated agent. Computational Intelligence 11(1), 132–171 (1995)CrossRefGoogle Scholar
  21. 21.
    Kraus, S., Wilkenfeld, J., Harris, M.A., Blake, E.: The hostage crisis simulation. Simulation & Gaming 23(4), 398–416 (1992)CrossRefGoogle Scholar
  22. 22.
    Lax, D.A., Sebenius, J.K.: Thinking coalitionally: party arithmetic, process opportunism, and strategic sequencing. In: Young, H.P. (ed.) Negotiation Analysis, pp. 153–193. The University of Michigan Press (1992)Google Scholar
  23. 23.
    Li, C., Giampapa, J., Sycara, K.: A review of research literature on bilateral negotiations. Technical Report CMU-RI-TR-03-41 (2003)Google Scholar
  24. 24.
    Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational agents in environments with incomplete information using an automated agent. AIJ 172(6-7), 823–851 (2008)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Lomuscio, A., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in electronic commerce. In: Proceedings of AMEC 2001, pp. 19–33 (2001)Google Scholar
  26. 26.
    Manistersky, E., Lin, R., Kraus, S.: Understanding how people design trading agents over time. In: Proceedings of AAMAS 2008, pp. 1593–1596 (2008)Google Scholar
  27. 27.
    Matos, N., Sierra, C., Jennings, N.R.: Determining successful negotiation strategies: An evolutionary approach. In: Proceedings of ICMAS 1998 (1998)Google Scholar
  28. 28.
    Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge (1982)Google Scholar
  29. 29.
    Rosenschein, J., Zlotkin, G.: Designing Conventions for Automated Negotiation among Computers. The MIT Press, Cambridge (1994)Google Scholar
  30. 30.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sycara, K., Zeng, D.: Bayesian learning in negotiation. In: Working Notes of the AAAI Spring Symposium on Adaptation, Co-evolution and Learning in Multiagent Systems (1996)Google Scholar
  32. 32.
    Thiessen, E.M., Loucks, D.P., Stedinger, J.R.: Computer-assisted negotiations of water resources conflicts. GDN 7(2), 109–129 (1998)Google Scholar
  33. 33.
    Wellman, M.P., Greenwald, A., Stone, P.: Autonomous Bidding Agents: Strategies and Lessons from the Trading Agent Competition. MIT Press, Cambridge (2007)Google Scholar
  34. 34.
    Zhang, X., Lesser, V., Podorozhny, R.: Multi-dimensional, multistep negotiation for task allocation in a cooperative system. JAAMAS 10(1), 5–40 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Raz Lin
    • 1
  • Sarit Kraus
    • 1
    • 2
  • Dmytro Tykhonov
    • 3
  • Koen Hindriks
    • 3
  • Catholijn M. Jonker
    • 3
  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael
  2. 2.Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA
  3. 3.Man-Machine Interaction GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations