Advertisement

Synthesis of On-Line Planning Tester for Non-deterministic EFSM Models

  • Marko Kääramees
  • Jüri Vain
  • Kullo Raiend
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6303)

Abstract

We describe a method and algorithm for model-based construction of an on-line reactive planning tester (RPT) for black-box testing of state based systems specified by non-deterministic extended finite state machine (EFSM) models. The key idea of RPT lies in off-line preprocessing of the System Under Test (SUT) model to prepare the data for efficient on-line reactive test planning. A test purpose is attributed to the transitions of the SUT model by a set of Boolean conditions called traps. The result of the off-line analysis is a set of constraints used in on-line testing for guiding the SUT towards taking the moves represented by trap-labelled transitions in SUT model and generating required data for inputs. We demonstrate the results on a simple example and discuss the practical experiences of using the proposed method.

Keywords

Planning Horizon System Under Test Outgoing Transition Weak Precondition Extended Finite State Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.: Optimal strategies for testing nondeterministic systems. In: ISSTA 2004. Software Engineering Notes, vol. 29, pp. 55–64. ACM, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Godefroid, P., de Halleux, P., Nori, A.V., Rajamani, S.K., Schulte, W., Tillmann, N., Levin, M.Y.: Automating software testing using program analysis. IEEE Software 25, 30–37 (2008)CrossRefGoogle Scholar
  3. 3.
    Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Estimating the feasibility of transition paths in extended finite state machines. Automated Software Engg. 17(1), 33–56 (2010)CrossRefGoogle Scholar
  4. 4.
    Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In: Proc. of 15th International Joint Conference on Artificial Intelligence, IJCAI, pp. 1178–1185 (1997)Google Scholar
  5. 5.
    Vain, J., Raiend, K., Kull, A., Ernits, J.: Synthesis of test purpose directed reactive planning tester for nondeterministic systems. In: 22nd IEEE/ACM International Conference on Automated Software Engineering, pp. 363–372. ACM Press, New York (2007)Google Scholar
  6. 6.
    Kull, A., Raiend, K., Vain, J., Kääramees, M.: Case study-based performance evaluation of reactive planning tester. In: Model-based Testing in Practice: 2nd Workshop on Model-based Testing in Practice (MoTiP 2009), Enschede, The Netherlands. CTIT Workshop Proceedings Series WP09-08, pp. 87–96 (2009)Google Scholar
  7. 7.
    Hamon, G., de Moura, L., Rushby, J.: Automated test generation with SAL. CSL Technical Note (1995)Google Scholar
  8. 8.
    De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marko Kääramees
    • 1
  • Jüri Vain
    • 1
  • Kullo Raiend
    • 1
  1. 1.Tallinn University of Technology 

Personalised recommendations