Reliable Computing with GNU MPFR

  • Paul Zimmermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)


This article presents a few applications where reliable computations are obtained using the GNU MPFR library.


reliable computing correct rounding IEEE 754 GNU MPFR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiba, F., Ushijima, T.: Computation of the scattering amplitude for a scattering wave produced by a disc – approach by a fundamental solution method. Journal of Computational and Applied Mathematics 233(4), 1155–1174 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chiba, F., Ushijima, T.: Exponential decay of errors of a fundamental solution method applied to a reduced wave problem in the exterior region of a disc. Journal of Computational and Applied Mathematics 231(2), 869–885 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Dinechin, F., Ershov, A.V., Gast, N.: Towards the post-ultimate libm. In: Proceedings of 17th IEEE Symposium on Computer Arithmetic, Cape Cod, USA, pp. 288–295 (2005)Google Scholar
  4. 4.
    Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw., article 13 33(2) (2007)Google Scholar
  5. 5.
    Ghazi, K.R., Lefèvre, V., Théveny, P., Zimmermann, P.: Why and how to use arbitrary precision. Computing in Science and Engineering 12(3), 62–65 (2010)Google Scholar
  6. 6.
    IEEE standard for oating-point arithmetic, 2008. Revision of ANSI-IEEE Standard 754-1985, approved June 12, 2008: IEEE Standards Board (2008)Google Scholar
  7. 7.
    Kornerup, P., Lefèvre, V., Louvet, N., Muller, J.-M.: On the computation of correctly-rounded sums. In: Bruguera, J.D., Cornea, M., Das-Sarma, D., Harrison, J. (eds.) Proceedings of the 19th IEEE Symposium on Computer Arithmetic (ARITH’19), pp. 155–160. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  8. 8.
    Lauter, C.Q., Lefèvre, V.: An efficient rounding boundary test for pow(x, y) in double precision. IEEE Trans. Comput. 58(2), 197–207 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paul Zimmermann
    • 1
  1. 1.LORIA/INRIA Nancy-Grand Est, Équipe CARAMEL - bâtiment AVillers-lès-Nancy Cedex

Personalised recommendations