isl: An Integer Set Library for the Polyhedral Model

  • Sven Verdoolaege
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)


In compiler research, polytopes and related mathematical objects have been successfully used for several decades to represent and manipulate computer programs in an approach that has become known as the polyhedral model. The key insight is that the kernels of many compute-intensive applications are composed of loops with bounds that are affine combinations of symbolic constants and outer loop iterators. The iterations of a loop nest can then be represented as the integer points in a (parametric) polytope and manipulated as a whole, rather than as individual iterations. A similar reasoning holds for the elements of an array and for mappings between loop iterations and array elements.


Integer Point Basis Reduction Vertex Enumeration Polyhedral Model Rational Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bagnara, R., Hill, P., Zaffanella, E.: Exact join detection for convex polyhedra and other numerical abstractions. Comput. Geom. Theory Appl. 43(5), 453–473 (2010)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: PACT 2004, pp. 7–16. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  4. 4.
    Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symb. Comput. 33(1), 1–12 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive closure of a union of affine integer tuple relations. In: COCOA 2009, pp. 98–109. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhedra. Comput. Geom. 18(3), 141–154 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, C.: Omega+ library (2009),
  8. 8.
    Clauss, P., Fernandez, F.J., Gabervetsky, D., Verdoolaege, S.: Symbolic polynomial maximization over convex sets and its application to memory requirement estimation. IEEE Transactions on VLSI Systems 17(8), 983–996 (2009)CrossRefGoogle Scholar
  9. 9.
    Cook, W., Rutherford, T., Scarf, H.E., Shallcross, D.F.: An implementation of the generalized basis reduction algorithm for integer programming. Cowles Foundation Discussion Papers 990, Cowles Foundation, Yale University (August 1991)Google Scholar
  10. 10.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Feautrier, P.: Parametric integer programming. Operationnelle/Operations Research 22(3), 243–268 (1988)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Feautrier, P.: Dataflow analysis of array and scalar references. International Journal of Parallel Programming 20(1), 23–53 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Free Software Foundation, Inc.: GMP, available from
  14. 14.
    Fukuda, K., Liebling, T.M., Lütolf, C.: Extended convex hull. In: Proceedings of the 12th Canadian Conference on Computational Geometry, pp. 57–63 (2000)Google Scholar
  15. 15.
    Karr, M.: Affine relationships among variables of a program. Acta Informatica 6, 133–151 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The Omega library. Tech. rep., University of Maryland (November 1996)Google Scholar
  17. 17.
    Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs and its applications. Int. J. Parallel Program. 24(6), 579–598 (1996)Google Scholar
  18. 18.
    Loechner, V.: PolyLib: A library for manipulating parameterized polyhedra. Tech. rep., ICPS, Université Louis Pasteur de Strasbourg, France (March 1999)Google Scholar
  19. 19.
    Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. International Journal of Parallel Programming 25(6), 525–549 (1997)CrossRefGoogle Scholar
  20. 20.
    Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. Communications of the ACM 8, 102–114 (1992)CrossRefGoogle Scholar
  21. 21.
    Rambau, J.: TOPCOM: Triangulations of point configurations and oriented matroids. In: Cohen, A.M., Gao, X.S., Takayama, N. (eds.) ICMS 2002, pp. 330–340 (2002)Google Scholar
  22. 22.
    Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine programs using widening to handle recurrences. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 599–613. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sven Verdoolaege
    • 1
    • 2
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenBelgium
  2. 2.Team ALCHEMY, INRIA SaclayFrance

Personalised recommendations