Advertisement

C++ Tools for Exploiting Polyhedral Symmetries

  • Thomas Rehn
  • Achill Schürmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)

Abstract

We report on the recently developed C++ tools PermLib and SymPol that are designed to support high performance work with symmetric polyhedra. The callable library PermLib provides basic support for permutation group algorithms and data structures. It can in particular be used for the development of optimization algorithms that combine methods from polyhedral combinatorics and computational group theory. The software SymPol is such an application helping to detect polyhedral symmetries and to analyze faces of polyhedra up to symmetries. It in particular provides successfully used decomposition methods for polyhedral representation conversions up to symmetries.

Keywords

polyhedral combinatorics symmetries permutation group algorithms representation conversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BDS09]
    Bremner, D., Dutour Sikirić, M., Schürmann, A.: Polyhedral representation conversion up to symmetries. In: Bremner, D., Avis, D., Deza, A. (eds.) Proceedings of the 2006 CRM Workshop on Polyhedral Computation. CRM Proceedings & Lecture Notes, vol. 48, pp. 45–71. AMS, Providence (2009)Google Scholar
  2. [DSV07]
    Dutour Sikirić, M., Schürmann, A., Vallentin, F.: Classification of eight dimensional perfect forms. Electron. Res. Announc. Amer. Math. Soc. 13, 21–32 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [DSV09]
    Dutour Sikirić, M., Schürmann, A., Vallentin, F.: The contact polytope of the Leech lattice. Discrete Comput. Geom. (to appear), preprint at arXiv:0906.1427 Google Scholar
  4. [HEO05]
    Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of computational group theory. Chapman & Hall/CRC, Boca Raton (2005)zbMATHCrossRefGoogle Scholar
  5. [Kum10]
    Kumar, A.: Elliptic fibrations on a generic Jacobian Kummer surface (in preparation)Google Scholar
  6. [Leo91]
    Leon, J.S.: Permutation group algorithms based on partitions. I. Theory and algorithms. J. Symbolic Comput. 12, 533–583 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Mar09]
    Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008. Springer, Heidelberg (2009)Google Scholar
  8. [Reh10]
    Rehn, T.: Fundamental Permutation Group Algorithms for Symmetry Computation, Diploma thesis (computer science), Otto von Guericke University Magdeburg (2010), http://fma2.math.uni-magdeburg.de/~latgeo/permlib/diploma-thesis-cs-rehn.pdf
  9. [San10]
    Santos, F.: A counterexample to the Hirsch conjecture, preprint at arxiv:1006.2814Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Rehn
    • 2
  • Achill Schürmann
    • 1
  1. 1.Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
  2. 2.Faculty for MathematicsOtto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations