NZMATH 1.0

  • Satoru Tanaka
  • Naoki Ogura
  • Ken Nakamula
  • Tetsushi Matsui
  • Shigenori Uchiyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)

Abstract

This is an announcement of the first official release (version 1.0) of the system NZMATH for number theory by Python [18]. We review all functions in NZMATH 1.0, show its main properties added after the report [11] about NZMATH 0.5.0, and describe new features for stable development. The most important point of the release is that we can now treat number fields. The second major change is that new types of polynomial programs are provided. Elliptic curve primality proving and its related programs are also available, where we partly use a library outside NZMATH as an advantage of writing the system only by Python. A new feature is that NZMATH is registered on SourceForge [19] as an open source project in order to ensure continuous development of the project. This is a unique among existing systems for number theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aptana Inc.: Pydev; http://pydev.org/
  3. 3.
    Atkin, A., Morain, F.: Elliptic curves and primality proving. Mathematics of Computation 61, 29–68 (1993)MATHMathSciNetGoogle Scholar
  4. 4.
    Bareiss, E.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Mathematics of Computation 22, 565–578 (1968)MATHMathSciNetGoogle Scholar
  5. 5.
    Eclipse Foundation: Eclipse IDE, http://www.eclipse.org/
  6. 6.
  7. 7.
    The KANT Project: KANT / KASH, http://www.math.tu-berlin.de/%7Ekant/kash.html
  8. 8.
    Knuth, D.: Structured Programming with go to Statements. ACM Journal Computing Surveys 6(4), 261–301 (1974)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
  10. 10.
  11. 11.
    Matsui, T.: Development of NZMATH. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 158–169. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Matt Mackall: Mercurial, http://mercurial.selenic.com/
  13. 13.
  14. 14.
    NZMATH development group: Hilbert Class Polynomial, http://hilbert-class-polynomial.appspot.com/
  15. 15.
    NZMATH development group: NZMATH, http://tnt.math.metro-u.ac.jp/nzmath/
  16. 16.
    NZMATH development group: NZMATH / JSON, http://nzmath-json.appspot.com/
  17. 17.
    The PARI group: PARI/GP Development Headquarter, http://pari.math.u-bordeaux.fr/
  18. 18.
    van Rossum, G.: Foreword. In: Programming Python, 1st edn. O’Reilly, Sebastopol (May 1996)Google Scholar
  19. 19.
    SourceForge.net, http://sourceforge.net/
  20. 20.
    Stein, W.: Software for Algebra and Geometry Experimentation, http://modular.fas.harvard.edu/SAGE/
  21. 21.
    The SIMATH center: SIMATH, http://tnt.math.metro-u.ac.jp/simath/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Satoru Tanaka
    • 1
  • Naoki Ogura
    • 1
  • Ken Nakamula
    • 1
  • Tetsushi Matsui
    • 1
  • Shigenori Uchiyama
    • 1
  1. 1.Department of Mathematics and Information SciencesTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations