Enumerating Galois Representations in Sage

  • Craig Citro
  • Alexandru Ghitza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)


We present an algorithm for enumerating all odd semisimple two-dimensional mod p Galois representations unramified outside p. We also discuss the implementation of this algorithm in Sage and give a summary of the results we obtained.


Galois representations Sage modular forms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Citro, C., Ghitza, A.: Computing level 1 Hecke eigensystems (mod p) (preprint)Google Scholar
  2. 2.
    Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Khare, C.: Modularity of Galois representations and motives with good reduction properties. J. Ramanujan Math. Soc. 22(1), 75–100 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009), zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Khare, C., Wintenberger, J.P.: Serre’s modularity conjecture. II. Invent. Math. 178(3), 505–586 (2009), zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lario, J.C., Schoof, R.: Some computations with Hecke rings and deformation rings. Experiment. Math. 11(2), 303–311 (2002),; with an appendix by Amod Agashe and William Stein
  7. 7.
    Stein, W.: Modular forms, a computational approach. In: Graduate Studies in Mathematics, vol. 79. American Mathematical Society, Providence (2007); With an appendix by Paul E. GunnellsGoogle Scholar
  8. 8.
    Stein, W., et al.: Sage Mathematics Software (Version 4.4.1). The Sage Development Team (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Craig Citro
    • 1
    • 2
  • Alexandru Ghitza
    • 3
  1. 1.GoogleSeattle
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA
  3. 3.Department of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations