Accurate and Reliable Computing in Floating-Point Arithmetic

  • Siegfried M. Rump
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)


Methods will be discussed on how to compute accurate and reliable results in pure floating-point arithmetic. In particular, verification methods with INTLAB and error-free transformations will be presented in some detail.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge—A Study in High-Accuracy Numerical Computing. SIAM, Philadelphia (2004)zbMATHGoogle Scholar
  2. 2.
    ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic, New York (2008)Google Scholar
  3. 3.
    Rump, S.M.: Fast and parallel interval arithmetic. BIT Numerical Mathematics 39(3), 539–560 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 287–449 (2010)Google Scholar
  6. 6.
    Sahinidis, N.V., Tawaralani, M.: A polyhedral branch-and-cut approach to global optimization. Math. Programming B103, 225–249 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Trefethen, L.N.: The SIAM 100-Dollar, 100-Digit Challenge. SIAM-NEWS 35(6), 2 (2002), Google Scholar
  8. 8.
    Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci., Paris, Sér. I, Math. 328(12), 1197–1202 (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Siegfried M. Rump
    • 1
    • 2
  1. 1.Institute for Reliable ComputingHamburg University of TechnologyHamburgGermany
  2. 2.Faculty of Science and EngineeringVisiting Professor at Waseda UniversityTokyoJapan

Personalised recommendations