Advertisement

CoCoALib: A C++ Library for Computations in Commutative Algebra... and Beyond

  • John Abbott
  • Anna M. Bigatti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)

Abstract

First released in 1988,CoCoAis a special-purpose system for doing Computations in Commutative Algebra: i.e. it is a system specialized in the algorithmic treatment of polynomials. It is freely available and offers a textual interface, an Emacs mode, and a graphical user interface common to most platforms ([6]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, J., Bigatti, A.M.: CoCoALib: a C++ library for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it/cocoalib/
  2. 2.
    Abbott, J.: The Design of CoCoALib. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 205–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Abbott, J.: Twin-Float Arithmetic (preprint)Google Scholar
  4. 4.
    Abbott, J., Fassino, C., Torrente, M.L.: Stable border basis for ideals of points. Journal of Symbolic Computation 43, 883–894 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Abbott, J., Robbiano, L. (eds.): Approximate Commutative Algebra. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    CoCoATeam: CoCoA: a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it/
  7. 7.
    Fassino, C.: Almost Vanishing Polynomials for Sets of Limited Precision Points. Journal of Symbolic Computation 45, 19–37 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 1. Springer, Heidelberg (2000, 2008)zbMATHGoogle Scholar
  9. 9.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 2. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  10. 10.
    Grayson, D.R., Stillman, M.E.: Macaulay2: a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
  11. 11.
    Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-0: A computer algebra system for polynomial computations, http://www.singular.uni-kl.de/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • John Abbott
    • 1
  • Anna M. Bigatti
    • 1
  1. 1.Università degli Studi di GenovaItaly

Personalised recommendations