A GAP Package for Computation with Coherent Configurations

  • Dmitrii V. Pasechnik
  • Keshav Kini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)

Abstract

We present a GAP package for computing with Schurian coherent configurations and their representations.

Keywords

GAP coherent configuration association scheme permutation group GRAPE Sage semidefinite programming centralizer ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings (1984)Google Scholar
  2. 2.
    Cameron, P.J.: Permutation groups. London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  3. 3.
    Miyamoto, I.: Computation of isomorphisms of coherent configurations. Ars Mathematica Contemporanea 3(1) (2010)Google Scholar
  4. 4.
    Pasechnik, D., Kini, K.: Cohcfg, a GAP package for coherent configurations (preliminary version) (2010), http://www1.spms.ntu.edu.sg/~dima/software/cohcfg-a1.tgz
  5. 5.
    Schrijver, A.: New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE Trans. Inform. Theory 51(8), 2859–2866 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular *-representation. Math. Prog. B 109, 613–624 (2007); e-print 2005-03-1083, Optimization OnlineMATHCrossRefGoogle Scholar
  7. 7.
    de Klerk, E., Pasechnik, D.V., Maharry, J., Richter, B., Salazar, G.: Improved bounds for the crossing numbers of K m,n and K n. SIAM J. Discr. Math. 20, 189–202 (2006)MATHCrossRefGoogle Scholar
  8. 8.
    Vallentin, F.: Symmetry in semidefinite programs. Linear Algebra Appl. 430(1), 360–369 (2009)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ivanov, A.A., Pasechnik, D.V., Seress, A., Shpectorov, S.: Majorana representations of the symmetric group of degree 4. J. of Algebra (submitted)Google Scholar
  10. 10.
    Grohe, M.: Fixed-point definability and polynomial time on graph with excluded minors. In: 25th IEEE Symposium on Logic in Computer Science, LICS 2010 (to appear 2010) Google Scholar
  11. 11.
    Weisfeiler, B. (ed.): On Construction and Identification of Graphs. LNM, vol. 558. Springer, Berlin (1976)MATHGoogle Scholar
  12. 12.
    The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.12. (2008), http://www.gap-system.org
  13. 13.
    Stein, W., et al.: Sage Mathematics Software (Version 4.4). The Sage Development Team (2010), http://www.sagemath.org
  14. 14.
    Soicher, L.H.: GRAPE: a system for computing with graphs and groups. In: Finkelstein, L., Kantor, W. (eds.) Groups and Computation. DIMACS Series in Discrete Mathematics and Theoretical CS, vol. 11, pp. 287–291. AMS, Providence (1993)Google Scholar
  15. 15.
    Faradzev, I.A., Klin, M.H.: Computer package for computations with coherent configurations. In: ISSAC 1991, Proc. Symposium on Symbolic and Algebraic Computation, pp. 219–221. Association for Computing Machinery, New York (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dmitrii V. Pasechnik
    • 1
  • Keshav Kini
    • 1
  1. 1.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore

Personalised recommendations