Variability Modeling for Distributed Development – A Comparison with Established Practice

  • Klaus Schmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6287)


The variability model is a central artifact in product line engineering. Existing approaches typically treat this as a single centralized artifact which describes the configuration of other artifacts. This approach is very problematic in distributed development as a monolithic variability model requires significant coordination among the involved development teams. This holds in particular if multiple independent organizations are involved.

At this point very little work exists that explicitly supports variability modeling in a distributed setting. In this paper we address the question how existing, real-world, large-scale projects deal with this problem as a source of inspiration on how to deal with this in variability management.


Software product lines variability modeling eclipse debian linux distributed modeling software ecosystems global development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aoki, O.: Debian Reference, (2007), (last verified: 13.3.2009)
  2. 2.
    Benavides, D.: On the automated analysis of software product lines using feature models. A framework for developing automated tool support. PhD thesis, University of Seville, Spain (2007)Google Scholar
  3. 3.
    Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the 13th Software Product Line Conference, pp. 111–119 (2009)Google Scholar
  4. 4.
    Catalog of software product lines, (last verified: 13.03.2010)
  5. 5.
    Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston (2002)Google Scholar
  6. 6.
    Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specialization and multi-level configuration of feature models. Software Process Improvement and Practice 10(2), 143–169 (2005); Special Issue on Software Product LinesCrossRefGoogle Scholar
  7. 7.
    Dhungana, D., Heymans, P., Rabiser, R.: A formal semantics for decision-oriented variability modeling with dopler. In: Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems (VAMOS 2010), pp. 29–35 (2010)Google Scholar
  8. 8.
    Dhungana, D., Neumayer, T., Grünbacher, P., Rabiser, R.: Supporting the evolution of product line architectures with variability model fragments. In: Proceedings of the Seventh Working IEEE/IFIP Conference on Software Architecture, pp. 327–330 (2008)Google Scholar
  9. 9.
    The Eclipse Foundation. Eclipse 3.1 Documentation: Platform Plug-in Developer Guide (2005), (checked: 13.3.2009)
  10. 10.
    Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines. Computer 41(4), 93–95 (2008)CrossRefGoogle Scholar
  11. 11.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21 ESD-90-TR-222, Software Engineering Institute Carnegie Mellon University (1990)Google Scholar
  12. 12.
    van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action - The Best Industrial Practice in Product Line Engineering. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Parnas, D.: On the criteria to be used in decomposing systems into modules. Communications of the ACM 15(12), 1053–1058 (1972)CrossRefGoogle Scholar
  14. 14.
    Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations, Principles, and Techniques. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  15. 15.
    Rosenmüller, M., Siegmund, N.: Automating the configuration of multi software product lines. In: Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems (VAMOS 2010), pp. 123–130 (2010)Google Scholar
  16. 16.
    Rosenmüller, M., Siegmund, N., Kästner, C., ur Rahman, S.S.: Modeling dependent software product lines. In: GPCE Workshop on Modularization, Composition and Generative Techniques for Product Line Engineering (McGPLE), number MIP-0802, pp. 13–18. University of Passau (2008)Google Scholar
  17. 17.
    Schmid, K., Eichelberger, H.: Model-based implementation of meta-variability constructs: A case study using aspects. In: Proceedings of VAMOS 2008, pp. 63–71 (2008)Google Scholar
  18. 18.
    Schmid, K., John, I.: A customizable approach to full-life cycle variability management. Science of Computer Programming 53(3), 259–284 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature diagrams: A survey and a formal semantics. In: Proceedings of the 14th IEEE Requirements Engineering Conference (RE 2006), pp. 139–148 (2006)Google Scholar
  20. 20.
    She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The variability model of the linux kernel. In: Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems (VAMOS 2010), pp. 45–51 (2010)Google Scholar
  21. 21.
    van der Hoek, A.: Design-time product line architectures for any-time variability. Science of Computer Programming 53(30), 285–304 (2004); Special issue on Software Variability ManagementCrossRefMathSciNetGoogle Scholar
  22. 22.
    van Ommering, R.: Software reuse in product populations. IEEE Transactions on Software Engineering 31(7), 537–550 (2005)CrossRefGoogle Scholar
  23. 23.
    White, J., Schmidt, D., Wuchner, E., Nechypurenko, A.: Optimizing and automating product-line variant selection for mobile devices. In: Proceedings of the 11th Annual Software Product Line Conference (SPLC), pp. 129–140 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Klaus Schmid
    • 1
  1. 1.Institut für InformatikUniversität HildesheimHildesheim

Personalised recommendations