Towards a Model for the Multidimensional Analysis of Field Data

  • Sandro Bimonte
  • Myoung-Ah Kang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6295)


Integration of spatial data into multidimensional models leads to the concept of Spatial OLAP (SOLAP). Usually, SOLAP models exploit discrete spatial data. Few works integrate continuous field data into dimensions and measures. In this paper, we provide a multidimensional model that supports measures and dimension as continuous field data, independently of their implementation.


Spatial OLAP Field data Spatial Data Warehouses Multidimensional models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, T., Miquel, M.: Multidimensional Structures Dedicated to Continuous Spatiotemporal Phenomena. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 29–40. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Bédard, Y., Han, J.: Fundamentals of Spatial Data Warehousing for Geographic Knowledge Discovery. In: Geographic Data Mining and Knowledge Discovery. Taylor & Francis, New York (2009)Google Scholar
  3. 3.
    Bimonte, S., Gensel, J., Bertolotto, M.: Enriching Spatial OLAP with Map Generalization: a Conceptual Multidimensional Model. In: IEEE International Workshop on Spatial and Spatiotemporal Data Mining, pp. 332–334. IEEE CS Press, Los Alamitos (2008)Google Scholar
  4. 4.
    Bimonte, S., Tchounikine, A., Miquel, M., Pinet, F.: When Spatial Analysis Meets OLAP: Multidimensional Model and Operators. International Journal of DataWarehousing and Mining (to appear)Google Scholar
  5. 5.
    Câmara, G., De Freitas, U., Cordeiro, J.: Towards an algebra of geographical fields. In: Brazilian Symp. on Computer Graphics and Image Processing, Anais, Curitiba, pp. 205–212 (1994)Google Scholar
  6. 6.
    Di Martino, S., Bimonte, S., Bertolotto, M., Ferrucci, F.: Integrating Google Earth within OLAP Tools for Multidimensional Exploration and Analysis of Spatial Data. In: ICEIS 2009. LNBIP, vol. 24, pp. 940–951. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Franklin, C.: An Introduction to Geographic Information Systems: Linking Maps to databases. Database 15(2), 13–21 (1992)MathSciNetGoogle Scholar
  8. 8.
    Gutierrez, A., Baumann, P.: Modeling Fundamental Geo-Raster Operations with Array Algebra. In: IEEE International Workshop on Spatial and Spatiotemporal Data Mining, pp. 607–612. IEEE CS Press, Los Alamitos (2007)Google Scholar
  9. 9.
    Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. In: ACM SIGMOD International Conference on Management of Data, pp. 205–216. ACM Press, New York (1996)Google Scholar
  10. 10.
    Kemp, K.: Environmental Modeling with GIS: A Strategy for Dealing with Spatial Continuity. Technical Report 93-3. National Center for Geographic Information and Analysis, University of California, Santa Barbara, USA (1993)Google Scholar
  11. 11.
    Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley & Sons, New York (1996)Google Scholar
  12. 12.
    Laurini, R., Gordillo, S.: Field Orientation for Continuous Spatio-temporal Phenomena. In: International Workshop on Emerging Technologies for Geo-based Applicatons, pp. 77–101. Swiss Federal Institute of Technology, Lausanne (2000)Google Scholar
  13. 13.
    Ledoux, H., Gold, C.M.: A Voronoi-based Map Algebra. In: 12th International Symp. on Spatial Data Handling, pp. 117–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design From Conventional to Spatial and Temporal Applications. Springer, Heidelberg (2008)MATHGoogle Scholar
  15. 15.
    McHugh, R.: Intégration De La Structure Matricielle Dans Les Cubes Spatiaux. Université Laval (2008)Google Scholar
  16. 16.
    Mennis, J., Viger, R., Tomlin, C.D.: Cubic Map Algebra functions for spatio-temporal analysis. Cartography and Geographic Information Systems 30(1), 17–30 (2005)CrossRefGoogle Scholar
  17. 17.
    Plumejeaud, C., Vincent, J., Grasland, C., Bimonte, S., Mathian, H., Guelton, S., Boulier, J., Gensel, J.: HyperSmooth, a system for Interactive Spatial Analysis via Potential Maps. In: Bertolotto, M., Ray, C., Li, X. (eds.) W2GIS 2008. LNCS, vol. 5373, pp. 4–16. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Silva, J., Castro Vera, A.S., Oliveira, A.G., Fidalgo, R., Salgado, A.C., Times, V.C.: Querying geographical data warehouses with GeoMDQL. In: Brazilian Symposium on Databases, pp. 223–237 (2007)Google Scholar
  19. 19.
    Stefanovic, N., Han, J., Koperski, K.: Object-Based Selective Materialization for Efficient Implementation of Spatial Data Cubes. IEEE Transactions on Knowledge and Data Engineering 12(6), 938–958 (2000)CrossRefGoogle Scholar
  20. 20.
    Tao, Y., Papadias, D.: Historical spatio-temporal aggregation. ACM Trans. Inf. Syst. 23(1), 61–102 (2005)CrossRefGoogle Scholar
  21. 21.
    Timpf, S., Frank, A.U.: Using hierarchical spatial data structures for hierarchical spatial reasoning. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 69–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Tomlin, C.D.: Geographic Information Systems and Cartographic Modeling. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  23. 23.
    Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data warehouses. In: 17th ACM SIGSPATIAL International Symp. on Advances in Geographic Information Systems, pp. 168–177. ACM Press, New York (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sandro Bimonte
    • 1
  • Myoung-Ah Kang
    • 2
  2. 2.LIMOS-UMR CNRS 6158,ISIMABlaise Pascal UniversityAUBIEREFrance

Personalised recommendations