Georeferenced data sets are often large and complex. Natural language generation (NLG) systems are beginning to emerge that generate texts from such data. One of the challenges these systems face is the generation of geographic descriptions that refer to the location of events or patterns in the data. Based on our studies in the domain of meteorology we present an approach to generating approximate geographic descriptions involving regions, which incorporates domain knowledge and task constraints to model the utility of a description. Our evaluations show that NLG systems, because they can analyse input data exhaustively, can produce more fine-grained geographic descriptions that are potentially more useful to end users than those generated by human experts.


data-to-text systems georeferenced data geographic descriptions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benamara, F.: Generating intensional answers in intelligent question answering systems. In: Belz, A., Evans, R., Piwek, P. (eds.) INLG 2004. LNCS (LNAI), vol. 3123, pp. 11–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Cimiano, P., Hartfiel, H., Rudolph, S.: Intensional question answering using ILP: What does an answer mean? In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 151–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Dale, R., Geldof, S., Prost, J.P.: Using natural language generation in automatic route description. Journal of Research and Practice in Information Technology 37(1), 89–105 (2005)Google Scholar
  4. 4.
    Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the generation of referring expressions. Cognitive Science 19, 233–263 (1995)CrossRefGoogle Scholar
  5. 5.
    van Deemter, K.: Generating referring expressions: Boolean extensions of the incremental algorithm. Computational Linguistics 28(1), 37–52 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ebert, C., Glatz, D., Jansche, M., Meyer-Klabunde, R., Porzel, R.: From conceptualization to formulation in generating spatial descriptions. In: Schmid, U., Krems, J., Wysotzki, F. (eds.) Proceedings of the 1st European Workshop on Cognitive Modeling, pp. 235–241 (1996)Google Scholar
  7. 7.
    Gardent, C.: Generating minimal definite descriptions. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL 2002), pp. 96–103 (2002)Google Scholar
  8. 8.
    Gatt, A., van Deemter, K.: Lexical choice and conceptual perspective in the generation of plural referring expressions. Journal of Logic, Language and Information 16, 423–443 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gatt, A.: Generating collective spatial references. In: Proceedings of the 28th Annual Meeting of the Cognitive Science Society, pp. 255–260 (2006)Google Scholar
  10. 10.
    Grice, H.: Logic and conversation. In: Cole, P., Morgan, J. (eds.) Syntax and Semantics, Speech Acts, vol. 3, pp. 43–58. Academic Press, New York (1975)Google Scholar
  11. 11.
    Horacek, H.: On referring to sets of objects naturally. In: Belz, A., Evans, R., Piwek, P. (eds.) INLG 2004. LNCS (LNAI), vol. 3123, pp. 70–79. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kelleher, J.D., Kruijff, G.J.M.: Incremental generation of spatial referring expressions in situated dialog. In: Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics (COLING-ACL 2006), pp. 1041–1048 (2006)Google Scholar
  13. 13.
    Khan, I.H., Ritchie, G., van Deemter, K.: The clarity-brevity trade-off in generating referring expressions. In: Proceedings of the 4th International Natural Language Generation Conference (INLG 2006), pp. 89–91 (2006)Google Scholar
  14. 14.
    Krahmer, E., van Erk, S., Verleg, A.: Graph-based generation of referring expressions. Computational Linguistics 29(1), 53–72 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Levinson, S.C.: Space in language and cognition: explorations in cognitive diversity. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  16. 16.
    Miller, H.J.: Tobler’s first law and spatial analysis. Annals of the Association of American Geographers 93(3), 574–594 (2004)CrossRefGoogle Scholar
  17. 17.
    Moulin, B., Kettani, D.: Route generation and description using the notions of object’s influence area and spatial conceptual map. Spatial Cognition and Computation 1, 227–259 (1999)CrossRefGoogle Scholar
  18. 18.
    O’Sullivan, D., Unwin, D.J.: Geographic Information Analysis. John Wiley & Sons, Chichester (2003)Google Scholar
  19. 19.
    Reiter, E., Sripada, S., Hunter, J., Yu, J., Davy, I.: Choosing words in computer-generated weather forecasts. Artificial Intelligence 67, 137–169 (2005)CrossRefGoogle Scholar
  20. 20.
    Sripada, S., Reiter, E., Hunter, J.R.W., Yu, J.: Generating English summaries of time series data using the Gricean maxims. In: Proceedings of the 9th ACM SIGMOD International Conference on Knowledge Discovery and Data Mining (KDD-2003), pp. 187–196 (2003)Google Scholar
  21. 21.
    Stone, M.: On identifying sets. In: Proceedings of the 1st International Conference on Natural Language Generation (INLG 2000), pp. 116–123 (2000)Google Scholar
  22. 22.
    Thomas, K.E., Sripada, S.: What’s in a message? Interpreting geo-referenced data for the visually-impaired. In: Proceedings of the 5th International Conference on Natural Language Generation (INLG 2008), pp. 113–120 (2008)Google Scholar
  23. 23.
    Tobler, W.: A computer movie simulating urban growth in the Detroit region. Economic Geography 46(2), 234–240 (1970)CrossRefGoogle Scholar
  24. 24.
    Towns, S., Callaway, C., Lester, J.: Generating coordinated natural language and 3D animations for complex spatial explanations. In: Proceedings of the 15th National Conference on Artificial Intelligence, pp. 112–119 (1998)Google Scholar
  25. 25.
    Trafton, J.G.: Dynamic mental models in weather forecasting. In: Proceedings of the Human Factors and Ergonomics Society 51st Annual Meeting, pp. 311–314 (2007)Google Scholar
  26. 26.
    Turner, R.: Georeferenced Data-To-Text: Techniques and Application. Unpublished PhD thesis, University of Aberdeen (2009)Google Scholar
  27. 27.
    Turner, R., Sripada, S., Reiter, E., Davy, I.: Generating spatio-temporal descriptions in pollen forecasts. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2006), pp. 163–166 (2006)Google Scholar
  28. 28.
    Turner, R., Sripada, S., Reiter, E., Davy, I.: Building a parallel spatio-temporal data-text corpus for summary generation. In: Proceedings of the LREC 2008 Workshop on Methodologies and Resources for Processing Spatial Language, pp. 28–35 (2008)Google Scholar
  29. 29.
    Turner, R., Sripada, S., Reiter, E., Davy, I.: Using spatial reference frames to generate grounded textual summaries of georeferenced data. In: Proceedings of the 5th International Conference on Natural Language Generation (INLG 2008), pp. 16–24 (2008)Google Scholar
  30. 30.
    Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In: Frank, A., Campari, I. (eds.) Spatial Information Theory, pp. 14–24. Springer, Berlin (1993)Google Scholar
  31. 31.
    Varges, S.: Spatial descriptions as referring expressions in the MapTask domain. In: Proceedings of the 10th European Workshop on Natural Language Generation (ENLG 2005), pp. 207–210 (2005)Google Scholar
  32. 32.
    Varzi, A.C.: Vagueness in geography. Philosophy & Geography 4(1), 49–65 (2001)CrossRefGoogle Scholar
  33. 33.
    Viethen, J., Dale, R.: The use of spatial relations in referring expressions. In: Proceedings of the 5th International Conference on Natural Language Generation (INLG 2008), pp. 59–67 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ross Turner
    • 1
  • Somayajulu Sripada
    • 2
  • Ehud Reiter
    • 2
  1. 1.Nokia Gate5 GmbHBerlinGermany
  2. 2.Department of Computing ScienceUniversity of AberdeenUK

Personalised recommendations