Advertisement

Motion Profiles for Deception Detection Using Visual Cues

  • Nicholas Michael
  • Mark Dilsizian
  • Dimitris Metaxas
  • Judee K. Burgoon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6316)

Abstract

We propose a data-driven, unobtrusive and covert method for automatic deception detection in interrogation interviews from visual cues only. Using skin blob analysis together with Active Shape Modeling, we continuously track and analyze the motion of the hands and head as a subject is responding to interview questions, as well as their facial micro expressions, thus extracting motion profiles, which we aggregate over each interview response. Our novelty lies in the representation of the motion profile distribution for each response. In particular, we use a kernel density estimator with uniform bins in log feature space. This scheme allows the representation of relatively over-controlled and relatively agitated behaviors of interviewed subjects, thus aiding in the discrimination of truthful and deceptive responses.

Keywords

Nonverbal Behavior Interview Response Active Shape Model Multiple Instance Learn Deception Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ekman, P.: Telling lies: Clues to deceit in the marketplace, politics, and marriage, vol. 2. WW Norton and Company, New York (1992)Google Scholar
  2. 2.
    Zhang, Z., Singh, V., Slowe, T.E., Tulyakov, S., Govindaraju, V.: Real-time automatic deceit detection from involuntary facial expressions. In: IEEE CVPR (2007)Google Scholar
  3. 3.
    George, J., Biros, D.P., Burgoon, J.K., Nunamaker, J.: Training professionals to detect deception. In: NSF/NIJ Symposium on Intelligence and Security Informatics, Tucson, AZ (2003)Google Scholar
  4. 4.
    DePaulo, B., Lindsay, J., Muhlenbruck, L., Charlton, K., Cooper, H.: Cues to deception. Psychological Bulletin 129, 74–118 (2003)CrossRefGoogle Scholar
  5. 5.
    Vrij, A.: Detecting lies and deceit: The psychology of lying and its implications for professional practice. Wiley, Chichester (2000)Google Scholar
  6. 6.
    Buller, D., Burgoon, J., White, C., Ebesu, A.: Interpersonal deception: VII. Behavioral Profiles of Falsification, Equivocation and Concealment. Journal of Language and Social Psychology 13, 366–395 (1994)CrossRefGoogle Scholar
  7. 7.
    Ekman, P.: Lying and nonverbal behavior: Theoretical issues and new findings. Journal of Nonverbal Behavior 12, 163–176 (1988)CrossRefGoogle Scholar
  8. 8.
    Vrij, A., Edward, K., Roberts, K., Bull, R.: Detecting deceit via analysis of verbal and nonverbal behavior. Journal of Nonverbal Behavior 24, 239–263 (2000)CrossRefGoogle Scholar
  9. 9.
    Burgoon, J.K.: A communication model of personal space violations: Explication and an initial test. Human Communication Research 4, 129–142 (1978)CrossRefGoogle Scholar
  10. 10.
    Buller, D., Burgoon, J.: Interpersonal deception theory. Communication Theory 6, 203–242 (1996)CrossRefGoogle Scholar
  11. 11.
    Meservy, T.O., Jensen, M.L., Kruse, J., Burgoon, J.K., Nunamaker, J.F.: Automatic Extraction of Deceptive Behavioral Cues from Video. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 198–208. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Buddharaju, P., Dowdall, J., Tsiamyrtzis, P., Shastri, D., Pavlidis, I., Frank, M.G.: Automatic thermal monitoring system (ATHEMOS) for deception detection. IEEE CVPR 2, 1179 (2005)Google Scholar
  13. 13.
    Johnson, R., Barnhardt, J., Zhu, J.: The contribution of executive processes to deceptive responding. Neuropsychologia 42, 878–901 (2004)CrossRefGoogle Scholar
  14. 14.
    Kozel, F.A., Johnson, K.A., Mu, Q., Grenesko, E.L., Laken, S.J., George, M.S.: Detecting deception using functional magnetic resonance imaging. Biological Psychiatry 58, 605–613 (2005)CrossRefGoogle Scholar
  15. 15.
    Ganis, G., Kosslyn, S.M., Stose, S., Thompson, W.L., Yurgelun-Todd, D.A.: Neural correlates of different types of deception: An fmri investigation. Cerebral Cortex 13, 830–836 (2003)CrossRefGoogle Scholar
  16. 16.
    Lu, S., Tsechpenakis, G., Metaxas, D., Jensen, M.L., Kruse, J.: Blob analysis of the head and hands: A method for deception detection and emotional state identification. In: Hawaii International Conference on System Sciences, Big Island, Hawaii (2005)Google Scholar
  17. 17.
    Tsechpenakis, G., Metaxas, D., Adkins, M., Kruse, J., Burgoon, J., Jensen, M., Meservy, T., Twitchell, D., Deokar, A., Nunamaker, J.: HMM-based deception recognition from visual cues. In: IEEE ICME, pp. 824–827. IEEE, Los Alamitos (2005)Google Scholar
  18. 18.
    Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–286 (1989)CrossRefGoogle Scholar
  19. 19.
    Ekman, P., Friesen, W.V.: Nonverbal leakage and clues to deception. Psychiatry 32, 88–106 (1969)Google Scholar
  20. 20.
    Buller, D.B., Burgoon, J.K., Buslig, A., Roiger, J.: Interpersonal deception: Viii. nonverbal and verbal correlates of equivocation from the bavelas et al (1990); research. Journal of Language and Social Psychology 13, 396–417 (1994)Google Scholar
  21. 21.
    Kanaujia, A., Huang, Y., Metaxas, D.: Tracking facial features using mixture of point distribution models. In: ICVGIP (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nicholas Michael
    • 1
  • Mark Dilsizian
    • 1
  • Dimitris Metaxas
    • 1
  • Judee K. Burgoon
    • 2
  1. 1.Computational Biomedicine Imaging & Modelling Center (CBIM)Rutgers The State University of New JerseyPiscataway
  2. 2.Center for the Management of Information (CMI)The University of ArizonaTucson

Personalised recommendations