Advertisement

Perspective Imaging under Structured Light

  • Prasanna Rangarajan
  • Vikrant Bhakta
  • Marc Christensen
  • Panos Papamichalis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6316)

Abstract

Traditionally, “Structured Light” has been used to recover surface topology and estimate depth maps. A more recent development is the use of “Structured Light” in surpassing the fundamental limit on spatial resolution imposed by diffraction. But, its use in surpassing the diffraction limit remains confined to microscopy, due to issues that arise in macroscopic imaging: perspective foreshortening, aliasing and need for calibration. Also, no formal attempt has been made to unify the above embodiments, despite their common reliance on “Structured Light”.

An original contribution of this work is the use of “Structured Light” in surpassing the diffraction limit of macroscopic imaging systems. Other contributions include

  • unifying the “Structured Light” embodiments in a single framework

  • realizing OSR and depth-estimation in a single un-calibrated setup

when the image planes of the imaging & illumination system are parallel.

Potential applications include bar code scanning and surveillance.

Keywords

Spatial Frequency Periodic Pattern Depth Estimation Epipolar Line Perspective Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-15567-3_30_MOESM1_ESM.pdf (3.7 mb)
Electronic Supplementary Material (3,778 KB)

References

  1. 1.
    Meadows, D.M., Johnson, W., Allen, J.B.: Generation of surface contours by moiré patterns. Appl. Opt. 9, 942–947 (1970)CrossRefGoogle Scholar
  2. 2.
    Takeda, M., Mutoh, K.: Fourier transform profilometry for the automatic measurement of 3-d object shapes. Appl. Opt. 22, 3977–3982 (1983)CrossRefGoogle Scholar
  3. 3.
    Srinivasan, V., Liu, H., Halioua, M.: Automated phase-measuring profilometry: a phase mapping approach. Applied Optics 24, 185–188 (1985)CrossRefGoogle Scholar
  4. 4.
    Posdamer, J.L., Altschuler, M.D.: Surface measurement by space-encoded projected beam systems. Computer Graphics and Image Processing 18, 1–17 (1982)CrossRefGoogle Scholar
  5. 5.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 195–202 (2003)Google Scholar
  6. 6.
    Hermans, C., Francken, Y., Cuypers, T., Bekaert, P.: Depth from sliding projections. In: IEEE Conf. on Computer Vision & Pattern Recognition, pp. 1865–1872 (2009)Google Scholar
  7. 7.
    Besl, P.: Active, optical range imaging sensors. Machine vision and applications 1, 127–152 (1988)CrossRefGoogle Scholar
  8. 8.
    Jarvis, R.: A perspective on range finding techniques for computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 5, 122–139 (1983)CrossRefGoogle Scholar
  9. 9.
    Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recognition 31, 977 (1998)CrossRefGoogle Scholar
  10. 10.
    Chen, F., Brown, G., Song, M.: Overview of three-dimensional shape measurement using optical methods. Optical Engineering 39, 10 (2000)CrossRefGoogle Scholar
  11. 11.
    Chen, S., Li, Y., Zhang, J., Wang, W.: Active sensor planning for multiview vision tasks. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Heintzmann, R., Cremer, C.: Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. In: Proceedings of SPIE, vol. 3568, p. 185 (1999)Google Scholar
  13. 13.
    Gustafsson, M.: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198, 82–87 (2000)CrossRefGoogle Scholar
  14. 14.
    Zalevsky, Z., Mendlovic, D.: Optical superresolution. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Mico, V., Zalevsky, Z., Garcia, J.: Optical Superresolution - Imaging Beyond Abbe’s Diffraction Limit. Journal of Holography and Speckle 5, 110–123 (2009)CrossRefGoogle Scholar
  16. 16.
    Martnez-Corral, M., Saavedra, G.: The Resolution Challenge in 3D Optical Microscopy. Progress in Optics, vol. 53, pp. 1–67 (2009)Google Scholar
  17. 17.
    Goodman, J.: Introduction to Fourier optics. Roberts & Company Publishers (2005)Google Scholar
  18. 18.
    Lukosz, W., Marchand, M.: Optischen Abbildung unter berschreitung der beugungsbedingten Auflsungsgrenze. Opt. Acta 10, 241–255 (1963)Google Scholar
  19. 19.
    Zhang, L., Nayar, S.: Projection defocus analysis for scene capture and image display. ACM Transactions on Graphics (TOG) 25, 915 (2006)Google Scholar
  20. 20.
    Vaquero, D.A., Raskar, R., Feris, R.S., Turk, M.: A projector-camera setup for geometry-invariant frequency demultiplexing. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida (2009)Google Scholar
  21. 21.
    Bracewell, R.: The Fourier Transform and its Applications (2000)Google Scholar
  22. 22.
    Halioua, M., Liu, H.: Optical three-dimensional sensing by phase measuring profilometry. Optics and lasers in engineering 11, 185–215 (1989)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Du, H., Park, S., Xie, H.: Three-dimensional shape measurement with a fast and accurate approach. Applied Optics 48, 1052–1061 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Prasanna Rangarajan
    • 1
  • Vikrant Bhakta
    • 1
  • Marc Christensen
    • 1
  • Panos Papamichalis
    • 1
  1. 1.Lyle School of EngineeringSouthern Methodist UniversityDallasU.S.A.

Personalised recommendations