Advertisement

A Continuous Max-Flow Approach to Potts Model

  • Jing Yuan
  • Egil Bae
  • Xue-Cheng Tai
  • Yuri Boykov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6316)

Abstract

We address the continuous problem of assigning multiple (unordered) labels with the minimum perimeter. The corresponding discrete Potts model is typically addressed with a-expansion which can generate metrication artifacts. Existing convex continuous formulations of the Potts model use TV-based functionals directly encoding perimeter costs. Such formulations are analogous to ’min-cut’ problems on graphs. We propose a novel convex formulation with a continous ’max-flow’ functional. This approach is dual to the standard TV-based formulations of the Potts model. Our continous max-flow approach has significant numerical advantages; it avoids extra computational load in enforcing the simplex constraints and naturally allows parallel computations over different labels. Numerical experiments show competitive performance in terms of quality and significantly reduced number of iterations compared to the previous state of the art convex methods for the continuous Potts model.

Keywords

Potts Model Dual Model Label Function Variational Perspective Simplex Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Computer Vision. Springer, New York (2005)zbMATHGoogle Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on PAMI 23, 1222–1239 (2001)Google Scholar
  3. 3.
    Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. App. Math. 66, 1632–1648 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Li, S.Z.: Markov random field modeling in image analysis. Springer, New York (2001)zbMATHGoogle Scholar
  6. 6.
    Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. Royal Stat. Soc., Series B, 271–279 (1989)Google Scholar
  7. 7.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Transactions on PAMI 26, 65–81 (2004)Google Scholar
  8. 8.
    Komodakis, N., Tziritas, G.: Approximate labeling via graph-cuts based on linear programming. In: Pattern Analysis and Machine Intelligence, pp. 1436–1453 (2007)Google Scholar
  9. 9.
    Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE Transactions on Information Theory 51, 3697–3717 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV 2003, pp. 26–33 (2003)Google Scholar
  11. 11.
    Kolmogorov, V., Boykov, Y.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: ICCV, pp. 564–571 (2005)Google Scholar
  12. 12.
    Kohli, P., Kumar, M.P., Torr, P.H.: p 3 and beyond: Move making algorithms for solving higher order functions. IEEE Transactions on PAMI 31, 1645–1656 (2009)Google Scholar
  13. 13.
    Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chan, T., Vese, L.: Active contours without edges. IEEE Image Proc. 10, 266–277 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Vese, L.A., Chan, T.F.: A new multiphase level set framework for image segmentation via the mumford and shah model. IJCV 50, 271–293 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lie, J., Lysaker, M., Tai, X.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Img. Proc. 15, 1171–1181 (2006)CrossRefGoogle Scholar
  17. 17.
    Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comp. 75, 1155–1174 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: VMV 2008 (2008)Google Scholar
  19. 19.
    Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical Report TR-2008-05, University of Bonn (2008)Google Scholar
  21. 21.
    Bae, E., Yuan, J., Tai, X.: Global minimization for continuous multiphase partitioning problems using a dual approach. UCLA CAM Report [09-75] (2009)Google Scholar
  22. 22.
    Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)Google Scholar
  24. 24.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  25. 25.
    Potts, R.B.: Some generalized order-disorder transformations. Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: IEEE International Conference on Computer Vision (ICCV), pp. 646–653 (2009)Google Scholar
  27. 27.
    Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: CVPR, Miami, Florida (2009)Google Scholar
  28. 28.
    Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: CVPR, USA, San Francisco (2010)Google Scholar
  29. 29.
    Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28, 151–167 (2007)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Ekeland, I., Téman, R.: Convex analysis and variational problems. Society for Industrial and Applied Mathematics, Philadelphia (1999)zbMATHGoogle Scholar
  31. 31.
    Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. U. S. A. 39, 42–47 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Giusti, E.: Minimal surfaces and functions of bounded variation. Australian National University, Canberra (1977)Google Scholar
  33. 33.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jing Yuan
    • 1
  • Egil Bae
    • 2
  • Xue-Cheng Tai
    • 2
    • 3
  • Yuri Boykov
    • 1
  1. 1.Computer Science DepartmentUniversity of Western OntarioLondon OntarioCanada
  2. 2.Department of MathematicsUniversity of BergenNorway
  3. 3.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore

Personalised recommendations