Advertisement

Seeing through Obscure Glass

  • Qi Shan
  • Brian Curless
  • Tadayoshi Kohno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6316)

Abstract

Obscure glass is textured glass designed to separate spaces and “obscure” visibility between the spaces. Such glass is used to provide privacy while still allowing light to flow into a space, and is often found in homes and offices. We propose and explore the challenge of “seeing through” obscure glass, using both optical and digital techniques. In some cases – such as when the textured surface is on the side of the observer – we find that simple household substances and cameras with small apertures enable a surprising level of visibility through the obscure glass. In other cases, where optical techniques are not usable, we find that we can model the action of obscure glass as convolution of spatially varying kernels and reconstruct an image of the scene on the opposite side of the obscure glass with surprising detail.

Keywords

Latent Image Small Aperture Blur Kernel Entrance Pupil Camera Placement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-642-15567-3_27_MOESM1_ESM.avi (14.7 mb)
Electronic Supplementary Material (15,065 KB)

References

  1. 1.
    Lide, D.R.: CRC Handbook of Chemistry and Physics, 90th edn. (2009)Google Scholar
  2. 2.
    Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Hecksher-Sørensen, J., Baldock, R., Davidson, D.: Optical projection tomography as a tool for 3d microscopy and gene expression studies. Science 296, 541–545 (2002)CrossRefGoogle Scholar
  3. 3.
    Trifonov, B., Bradley, D., Heidrich, W.: Tomographic reconstruction of transparent objects. In: Proc. Eurographics Symp. on Rendering, pp. 51–60 (2006)Google Scholar
  4. 4.
    Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. SIGGRAPH, 205–214 (1999)Google Scholar
  5. 5.
    Chuang, Y.Y., Zongker, D.E., Hindorff, J., Curless, B., Salesin, D., Szeliski, R.: Environment matting extensions: towards higher accuracy and real-time capture. SIGGRAPH, 121–130 (2000)Google Scholar
  6. 6.
    Peers, P., Dutré, P.: Wavelet environment matting. In: Rendering Techniques, pp. 157–166 (2003)Google Scholar
  7. 7.
    Wexler, Y., Fitzgibbon, A.W., Zisserman, A.: Image-based environment matting. In: Rendering Techniques (2002)Google Scholar
  8. 8.
    Agarwal, S., Mallick, S.P., Kriegman, D.J., Belongie, S.: On refractive optical flow. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 483–494. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Peers, P., Dutré, P.: Inferring reflectance functions from wavelet noise. In: Rendering Techniques, pp. 173–182 (2005)Google Scholar
  10. 10.
    Seitz, S.M., Matsushita, Y., Kutulakos, K.N.: A theory of inverse light transport. In: ICCV (2005)Google Scholar
  11. 11.
    Sen, P., Chen, B., Garg, G., Marschner, S.R., Horowitz, M., Levoy, M., Lensch, H.P.A.: Dual photography. SIGGRAPH 24 (2005)Google Scholar
  12. 12.
    Ihrke, I., Kutulakos, K.N., Lensch, H.P.A., Magnor, M., Heidrich, W.: State of the art in transparent and specular object reconstruction. In: STAR Proceedings of Eurographics (2008)Google Scholar
  13. 13.
    Murase, H.: Surface shape reconstruction of a nonrigid transparent object using refraction and motion. TPAMI, 1045–1052 (1992)Google Scholar
  14. 14.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. SIGGRAPH (2007)Google Scholar
  15. 15.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. SIGGRAPH (2008)Google Scholar
  16. 16.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Progressive inter-scale and intra-scale non-blind image deconvolution. SIGGRAPH (2008)Google Scholar
  17. 17.
    Kuhn, M.G.: Optical time-domain eavesdropping risks of CRT displays. In: IEEE Symp. on Security and Privacy (2002)Google Scholar
  18. 18.
    Backes, M., Dürmuth, M., Unruh, D.: Compromising reflections – or – how to read LCD monitors around the corner. In: IEEE Symp. on Security and Privacy (2008)Google Scholar
  19. 19.
    Backes, M., Chen, T., Duermuth, M., Lensch, H.P.A., Welk, M.: Tempest in a teapot: Compromising reflections revisited. In: IEEE Symp. on Security and Privacy (2009)Google Scholar
  20. 20.
  21. 21.
    Kim, S.J., Koh, K., Lustig, M., Boyd, S.: An efficient method for compressed sensing. In: ICIP (2007)Google Scholar
  22. 22.
    Johnson, M.K., Adelson, E.H.: Retrographic sensing for the measurement of surface texture and shape. In: CVPR, pp. 1070–1077 (2009)Google Scholar
  23. 23.
    Perlin, K.: An image synthesizer. SIGGRAPH Comput. Graph. 19, 287–296 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qi Shan
    • 1
  • Brian Curless
    • 1
  • Tadayoshi Kohno
    • 1
  1. 1.Department of Comptuer Science & EngineeringUniversity of Washington 

Personalised recommendations