Advertisement

Adaptive Regularization for Image Segmentation Using Local Image Curvature Cues

  • Josna Rao
  • Rafeef Abugharbieh
  • Ghassan Hamarneh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6314)

Abstract

Image segmentation techniques typically require proper weighting of competing data fidelity and regularization terms. Conventionally, the associated parameters are set through tedious trial and error procedures and kept constant over the image. However, spatially varying structural characteristics, such as object curvature, combined with varying noise and imaging artifacts, significantly complicate the selection process of segmentation parameters. In this work, we propose a novel approach for automating the parameter selection by employing a robust structural cue to prevent excessive regularization of trusted (i.e. low noise) high curvature image regions. Our approach autonomously adapts local regularization weights by combining local measures of image curvature and edge evidence that are gated by a signal reliability measure. We demonstrate the utility and favorable performance of our approach within two major segmentation frameworks, graph cuts and active contours, and present quantitative and qualitative results on a variety of natural and medical images.

Keywords

Active Contour Adaptive Weight Image Segmentation Technique Texture Edge Regularization Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-15561-1_47_MOESM1_ESM.pdf (97 kb)
Electronic Supplementary Material (98 KB)

References

  1. 1.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. of Comput. Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. of Comput. Vision 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Osher, S.J., Paragios, N.: Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  4. 4.
    Pluempitiwiriyawej, C., Moura, J.M.F., Wu, Y.J.L., Ho, C.: STACS: New active contour scheme for cardiac MR image segmentation. IEEE TMI 24, 593–603 (2005)Google Scholar
  5. 5.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vision 70, 109–131 (2006)CrossRefGoogle Scholar
  6. 6.
    Barrett, W.A., Mortensen, E.N.: Interactive live-wire boundary extraction. Medical Image Analysis 1, 331–341 (1997)CrossRefGoogle Scholar
  7. 7.
    Akselrod-Ballin, A., Galun, M., Gomori, M.J., Brandt, A., Basri, R.: Prior knowledge driven multiscale segmentation of brain MRI. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 118–126. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-75759-7_15 CrossRefGoogle Scholar
  8. 8.
    Zhao, P., Yu, B.: Stagewise lasso. Journal of Machine Learning Research 8, 2701–2726 (2007)MathSciNetGoogle Scholar
  9. 9.
    Samsonov, A.A., Johnson, C.R.: Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels. Magnetic Resonance in Medicine 52, 798–806 (2004)CrossRefGoogle Scholar
  10. 10.
    McIntosh, C., Hamarneh, G.: Is a single energy functional sufficient? Adaptive energy functionals and automatic initialization. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 503–510. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Szummer, M., Kohli, P., Hoiem, D.: Learning CRFs using Graph Cuts. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 582–595. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in computer vision. In: ICCV, vol. 8 (2007)Google Scholar
  13. 13.
    Rao, J., Hamarneh, G., Abugharbieh, R.: Adaptive contextual energy parameterization for automated image segmentation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 1089–1100. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Erdem, E., Tari, S.: Mumford-Shah regularizer with contextual feedback. Journal of Mathematical Imaging and Vision 33, 67–84 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kokkinos, I., Evangelopoulos, G., Maragos, P.: Texture analysis and segmentation using modulation features, generative models, and weighted curve evolution. IEEE PAMI 31, 142–157 (2009)Google Scholar
  16. 16.
    Malik, J., Belongie, S., Leung, T.K., Shi, J.: Contour and texture analysis for image segmentation. Int. J. of Comput. Vision 43, 7–27 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gilboa, G., Darbon, J., Osher, S., Chan, T.: Nonlocal convex functionals for image regularization. UCLA CAM-report, 06–57 (2006)Google Scholar
  18. 18.
    Cohen, I., Ayache, N., Sulger, P.: Tracking points on deformable objects using curvature information. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 458–466. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. of Comput. Vision 37, 151–172 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Glocker, B., Komodakis, N., Paragios, N., Navab, N.: Approximated curvature penalty in non-rigid registration using pairwise MRFs. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. Journal of Differential Geometry 33, 635–681 (1991)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Bagon, S.: MATLAB wrapper for graph cuts (2006), http://www.wisdom.weizmann.ac.il/~bagon
  23. 23.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 20, 1222–1239 (2001)Google Scholar
  24. 24.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10, 266–277 (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recognition Letters 1, 95–102 (1982)CrossRefGoogle Scholar
  26. 26.
    Donias, M., Baylou, P., Keskes, N.: Curvature of oriented patterns: 2-D and 3-D estimation from differential geometry. In: ICIP, pp. I: 236–240 (1998)Google Scholar
  27. 27.
    Lindeberg, T.: On scale selection for differential operators. In: Scan. Conf. on Image Analalysis, pp. 857–866 (1993)Google Scholar
  28. 28.
    Rao, J., Abugharbieh, R., Hamarneh, G.: Adaptive regularization for image segmentation using local image curvature cues. Technical Report TR 2010-08, School of Computing Science, Simon Fraser University, Burnaby, BC, Canada (2010)Google Scholar
  29. 29.
    Wu, Y.: Chan Vese active contours without edges (2009), http://www.mathworks.com/matlabcentral/fileexchange/23445
  30. 30.
    Olmos, A., Kingdom, F.A.A.: McGill calibrated colour image database (2004), http://tabby.vision.mcgill.ca
  31. 31.
    Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Evans, A.C.: BrainWeb: Online interface to a 3D MRI simulated brain database. In: NeuroImage, vol. 5, Academic Press, London (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Josna Rao
    • 1
  • Rafeef Abugharbieh
    • 1
  • Ghassan Hamarneh
    • 2
  1. 1.Biomedical Image & Signal Computing LabUniversity of British ColumbiaCanada
  2. 2.Medical Image Analysis LabSimon Fraser UniversityCanada

Personalised recommendations