Advertisement

Element-Wise Factorization for N-View Projective Reconstruction

  • Yuchao Dai
  • Hongdong Li
  • Mingyi He
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6314)

Abstract

Sturm-Triggs iteration is a standard method for solving the projective factorization problem. Like other iterative algorithms, this method suffers from some common drawbacks such as requiring a good initialization, the iteration may not converge or only converge to a local minimum, etc. None of the published works can offer any sort of global optimality guarantee to the problem. In this paper, an optimal solution to projective factorization for structure and motion is presented, based on the same principle of low-rank factorization. Instead of formulating the problem as matrix factorization, we recast it as element-wise factorization, leading to a convenient and efficient semi-definite program formulation. Our method is thus global, where no initial point is needed, and a globally-optimal solution can be found (up to some relaxation gap). Unlike traditional projective factorization, our method can handle real-world difficult cases like missing data or outliers easily, and all in a unified manner. Extensive experiments on both synthetic and real image data show comparable or superior results compared with existing methods.

References

  1. 1.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vision 9, 137–154 (1992)CrossRefGoogle Scholar
  2. 2.
    Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 709–720. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Triggs, B.: Factorization methods for projective structure and motion. In: CVPR, pp. 845–851. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  4. 4.
    Ueshiba, T., Tomita, F.: A factorization method for projective and euclidean reconstruction from multiple perspective views via iterative depth estimation. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 296–310. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Heyden, A., Berthilsson, R., Sparr, G.: An iterative factorization method for projective structure and motion from image sequences. Image Vision Comput. 17, 981–991 (1999)CrossRefGoogle Scholar
  6. 6.
    Chen, Q., Medioni, G.: Efficient iterative solution to m-view projective reconstruction problem. In: CVPR, pp. 55–61 (1999)Google Scholar
  7. 7.
    Mahamud, S., Hebert, M.: Iterative projective reconstruction from multiple views. In: CVPR, pp. 430–437 (2000)Google Scholar
  8. 8.
    Oliensis, J., Hartley, R.: Iterative extensions of the Sturm/Triggs algorithm: Convergence and nonconvergence. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2217–2233 (2007)CrossRefGoogle Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  10. 10.
    Mahamud, S., Hebert, M., Omori, Y., Ponce, J.: Provably-convergent iterative methods for projective structure from motion. In: CVPR, pp. 1018–1025 (2001)Google Scholar
  11. 11.
    Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statist., 876–879 (1964)Google Scholar
  12. 12.
    Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums. In: The American Mathematical Monthly, pp. 402–405 (1967)Google Scholar
  13. 13.
    Recht, B., Fazel, M., Parrilo, P.: Guarranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. Technical report, California Institute of Technology (2007)Google Scholar
  14. 14.
    Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: Proc. Am. Control Conf., pp. 4734–4739 (2001)Google Scholar
  15. 15.
    Toh, K., Todd, M., Tutuncu, R.: Sdpt3 — a matlab software package for semidefinite programming. Optimization Methods and Software, 545–581 (1999)Google Scholar
  16. 16.
    Cai, J.F., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion (2008), http://arxiv.org/abs/0810.3286
  17. 17.
    Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Program., Ser. A (2009)Google Scholar
  18. 18.
    Buchanan, A.M., Fitzgibbon, A.W.: Damped newton algorithms for matrix factorization with missing data. In: CVPR, pp. 316–322 (2005)Google Scholar
  19. 19.
    Martinec, D., Pajdla, T.: Structure from many perspective images with occlusions. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 355–369. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Tang, W., Hung, Y.: A subspace method for projective reconstruction from multiple images with missing data. Image Vision Comput 24, 515–524 (2006)CrossRefGoogle Scholar
  21. 21.
    Martinec, D., Pajdla, T.: 3D reconstruction by fitting low-rank matrices with missing data. In: CVPR, pp. 198–205 (2005)Google Scholar
  22. 22.
    Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: CVPR, pp. 1–8 (2007)Google Scholar
  23. 23.
    Olsson, C., Oskarsson, M.: A convex approach to low rank matrix approximation with missing data. In: SCIA, pp. 301–309 (2009)Google Scholar
  24. 24.
    Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis (2009), http://arxiv.org/abs/0912.3599
  25. 25.
    Chandrasekaran, V., Sanghavi, S., Parrilo, P., Willsky, A.: Rank-sparsity incoherence for matrix decomposition (2009), http://arxiv.org/abs/0906.2220v1

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yuchao Dai
    • 1
    • 2
  • Hongdong Li
    • 2
    • 3
  • Mingyi He
    • 1
  1. 1.School of Electronics and InformationNorthwestern Polytechnical University, Shaanxi Key Laboratory of Information Acquisition and ProcessingXi’anChina
  2. 2.Australian National UniversityAustralia
  3. 3.Canberra Research LabNICTAAustralia

Personalised recommendations