A Model of Volumetric Shape for the Analysis of Longitudinal Alzheimer’s Disease Data

  • Xinyang Liu
  • Xiuwen Liu
  • Yonggang Shi
  • Paul Thompson
  • Washington Mio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6313)


We develop a multi-scale model of shape based on a volumetric representation of solids in 3D space. A signed energy function (SEF) derived from the model is designed to quantify the magnitude of regional shape changes that correlate well with local shrinkage and expansion. The methodology is applied to the analysis of longitudinal morphological data representing hippocampal volumes extracted from one-year repeat magnetic resonance scans of the brain of 381 subjects collected by the Alzheimer’s Disease Neuroimaging Initiative. We first establish a strong correlation between the SEFs and hippocampal volume loss over a one-year period and then use SEFs to characterize specific regions where hippocampal atrophy over the one-year period differ significantly among groups of normal controls and subjects with mild cognitive impairment and Alzheimer’s disease.


Mild Cognitive Impairment Hippocampal Volume Hippocampal Atrophy Left Hippocampus Shape Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Apostolova, L.G., Lu, P.H., Rogers, S., Dutton, R.A., Hayashee, K.M., Toga, A.W., Cummings, J.L., Thompson, P.M.: 3D Mapping of Mini-mental State Examination Performance in Clinical and Preclinical Alzheimer Disease. Alzheimer Disease & Associated Disorders 20, 224–231 (2006)CrossRefGoogle Scholar
  2. 2.
    Apostolova, L.G., Dinov, I.D., Dutton, R.A., Hayashee, K.M., Toga, A.W., Cummings, J.L., Thompson, P.M.: 3D Comparison of Hippocampal Atrophy in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Brain 129, 2867–2873 (2006)CrossRefGoogle Scholar
  3. 3.
    Barnes, J., Bartlett, J.W., van de Pol, L.A., Loy, C.T., Scahill, R.I., Frost, C., Thompson, P.M., Fox, N.C.: A Meta-Analysis of Hippocampal Atrophy Rates in Alzheimer’s Disease. Neurobiol. Aging 30, 1711–1723 (2009)CrossRefGoogle Scholar
  4. 4.
    Morra, J., Tu, Z., Apostolova, L.G., et al.: and the ADNI: Automated Mapping of Hippocampal Atrophy in 1-Year Repeat MRI Data From 490 Subjects with Alzheimer’s Disease, Mild Cognitive Impairment, and Elderly Controls. NeuroImage 45(1 Suppl.), 3–15 (2009)CrossRefGoogle Scholar
  5. 5.
    Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G., Miller, M.I.: Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer Type. IEEE Trans. Med. Imaging 26(4), 462–470 (2007)CrossRefGoogle Scholar
  6. 6.
    Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, P.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A., Beckett, L.: The Alzheimer’s Disease Neuroimaging Initiative. Clin. North Am. 15, 869–877, xi–xii (2005)Google Scholar
  7. 7.
    Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, P.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A., Beckett, L.: Ways Toward an Early Diagnosis in Alzheimer’s Disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Dement. 1, 55–66 (2005)CrossRefGoogle Scholar
  8. 8.
    Liu, X., Shi, Y., Morra, J., Liu, X., Thompson, P.M., Mio, W.: Mapping Hippocampal Atrophy with a Multi-Scale Model of Shape. In: 6th IEEE International Symposium on Biomedical Imaging, pp. 879–882. IEEE Press, Boston (2009)CrossRefGoogle Scholar
  9. 9.
    Liu, X., Shi, Y., Wang, Y., Thompson, P.M., Mio, W.: A Riemannian Model of Regional Degeneration of the Hippocampus in Alzheimer’s Disease. In: 7th IEEE International Symposium on Biomedical Imaging, IEEE Press, Rotterdam (2010)Google Scholar
  10. 10.
    Kendall, D.G.: Shape Manifolds, Prosrustean Metrics and Complex Projective Spaces. Bulletin of London Mathematics Society 16, 81–121 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, New York (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    Shi, Y., Thompson, P.M., de Zubicaray, G.I., Rose, S.E., Tu, Z., Dinov, I., Toga, A.W.: Direct Mapping of Hippocampal Surfaces with Intrinsic Shape Context. NeuroImage 37(3), 792–807 (2007)CrossRefGoogle Scholar
  13. 13.
    Wahba, G.: Spline Models for Obervational Data. SIAM, Philadelphia (1990)Google Scholar
  14. 14.
    Liu, X., Mio, W., Shi, Y., Dinov, I., Liu, X., Lepore, N., Lepore, F., Fortin, M., Voss, P., Lassonde, M., Thompson, P.M.: Models of Normal Variation and Local Contrasts in Hippocampal Anatomy. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 407–415. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Liu, X.: Shape Spaces, Metrics and Their Applications to Brain Anatomy. Dissertation, Florida State University (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xinyang Liu
    • 1
  • Xiuwen Liu
    • 2
  • Yonggang Shi
    • 3
  • Paul Thompson
    • 3
  • Washington Mio
    • 1
  1. 1.Department of MathematicsFlorida State UniversityTallahasse
  2. 2.Department of Computer ScienceFlorida State UniversityTallahasse
  3. 3.Laboratory of NeuroImagingUCLA School of MedicineLos Angeles

Personalised recommendations