Automated 3D Reconstruction and Segmentation from Optical Coherence Tomography

  • Justin A. Eichel
  • Kostadinka K. Bizheva
  • David A. Clausi
  • Paul W. Fieguth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6313)


Ultra-High Resolution Optical Coherence Tomography is a novel imaging technology that allows non-invasive, high speed, cellular resolution imaging of anatomical structures in the human eye, including the retina and the cornea.

A three-dimensional study of the cornea, for example, requires the segmentation and mutual alignment of a large number of two-dimensional images. Such segmentation has, until now, only been undertaken by hand for individual two-dimensional images; this paper presents a method for automated segmentation, opening substantial opportunities for 3D corneal imaging and analysis, using many hundreds of 2D slices.


Optical Coherence Tomography Active Contour Active Contour Model Human Cornea Corneal Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Povaay, B., Hermann, B., Unterhuber, A., Hofer, B., Sattmann, H., Zeiler, F., Morgan, J.E., Falkner-Radler, C., Glittenberg, C., Blinder, S., Drexler, W.: Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J. Biomed. Opt. 12 (2007)Google Scholar
  2. 2.
    Akiba, M., Maeda, N., Yumikake, K., Soma, T., Nishida, K., Tano, Y., Chan, K.P.: Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography. J. Biomed. Opt. 12 (2007)Google Scholar
  3. 3.
    Jungwirth, J., Baumann, B., Pircher, M., Gtzinger, E., Hitzenberger, C.K.: Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography. J. Biomed. Opt. 14 (2009)Google Scholar
  4. 4.
    Gora, M., Karnowski, K., Szkulmowski, M., Kaluzny, B.J., Huber, R., Kowalczyk, A., Wojtkowski, M.: Ultra high-speed swept source imaging of the anterior segment of human eye at 200 khz with adjustable imaging range. Opt. Express. 17 (2009)Google Scholar
  5. 5.
    Martn-Navarro, C.M., Lorenzo-Morales, J., Cabrera-Serra, M.G., Rancel, F., Coronado-Alvarez, N., Piero, J., Valladares, B.: The potential pathogenicity of chlorhexidine-sensitive acanthamoeba strains isolated from contact lens cases from asymptomatic individuals in tenerife, canary islands, spain. J. Med. Microbiol. 57, 1399–1404 (2008); PMID: 18927419CrossRefGoogle Scholar
  6. 6.
    Smolin, G., Foster, C.S., Azar, D.T., Dohlman, C.H.: Smolin and Thoft’s The cornea. Lippincott Williams & Wilkins (2005)Google Scholar
  7. 7.
    Kostadinka, B., Hyun, C., Eichel, J., Hariri, S., Mishra, A., Clausi, D., Fieguth, P., Simpson, T., Hutchings, N., Manns, F., Soderberg, P.G., Ho, A.: Evaluation of hypoxic swelling of human cornea with high speed ultrahigh resolution optical coherence tomography. In: Ophthalmic Technologies XIX, San Jose, CA, USA, vol. 7163, pp. 71631G–71631G-6. SPIE (2009)Google Scholar
  8. 8.
    Snell, R.S., Lemp, M.A.: Clinical anatomy of the eye. Wiley-Blackwell (1998)Google Scholar
  9. 9.
    Drexler, W., Morgner, U., Ghanta, R.K., Kartner, F.X., Schuman, J.S., Fujimoto, J.G.: Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7, 502–507 (2001)CrossRefGoogle Scholar
  10. 10.
    Colchester, A., Hawkes, D.J.: Information processing in medical imaging. Springer, Heidelberg (1991)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hajnal, J.V., Hawkes, D.J., Hill, D.L.G.: Medical image registration. CRC Press, Boca Raton (2001)CrossRefGoogle Scholar
  12. 12.
    Kuo, J.: Electron microscopy. Humana Press, Totowa (2007)CrossRefGoogle Scholar
  13. 13.
    Frank, J.: Three-dimensional electron microscopy of macromolecular assemblies. Oxford University Press, US (2006)CrossRefGoogle Scholar
  14. 14.
    Gu, J.: Structural bioinformatics, 2nd edn. Wiley-Blackwell, Hoboken (2009)Google Scholar
  15. 15.
    Scarpa, F.: In vivo three-dimensional reconstruction of the cornea from confocal microscopy images. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 747–750 (2007)Google Scholar
  16. 16.
    Dani, P.: Automated assembling of images: image montage preparation. Pattern Recognition 28, 431 (1995)CrossRefGoogle Scholar
  17. 17.
    Li, H.: Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Current Eye Research 16, 214 (1997)CrossRefGoogle Scholar
  18. 18.
    Reinhard, T., Larkin, D.F.P.: Cornea and external eye disease. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Stachs, O., Zhivov, A., Kraak, R., Stave, J., Guthoff, R.: In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve structure in the human cornea. Graefes Arch. Clin. Exp. Ophthalmol. 245, 569–575 (2007)CrossRefGoogle Scholar
  20. 20.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  21. 21.
    Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Transaction on Pattern Analysis and Machine Intelligence 12, 855–867 (1990)CrossRefGoogle Scholar
  22. 22.
    Cohen, L.: On active contour models and balloons. Computer Vision Graphics and Image Understanding 53, 211–218 (1991)zbMATHGoogle Scholar
  23. 23.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  24. 24.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Transaction on Pattern Analysis and Machine Intelligence 17, 158–175 (1995)CrossRefGoogle Scholar
  25. 25.
    Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proc. 22nd Annu. Conf. on Comput. Graphics and Interact. Tech., vol. 22, pp. 191–198. ACM, New York (1995)Google Scholar
  26. 26.
    Garvin, M.K., Abrmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28, 1436–1447 (2009); PMID: 19278927CrossRefGoogle Scholar
  27. 27.
    Mishra, A., Wong, A., Bizheva, K., Clausi, D.A.: Intra-retinal layer segmentation in optical coherence tomography images. Opt. Express. 17, 23719–23728 (2009)CrossRefGoogle Scholar
  28. 28.
    Caselles, V., Catt, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc., London (1994)Google Scholar
  30. 30.
    Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13, 111–122 (1981)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Justin A. Eichel
    • 1
  • Kostadinka K. Bizheva
    • 2
  • David A. Clausi
    • 1
  • Paul W. Fieguth
    • 1
  1. 1.Systems Design EngineeringUniversity of WaterlooCanada
  2. 2.Department of Physics and AstronomyUniversity of WaterlooCanada

Personalised recommendations